三角形内角和定理(第2课时)(二).docx

三角形内角和定理(第2课时)(二).docx

ID:62530912

大小:61.06 KB

页数:6页

时间:2021-05-12

三角形内角和定理(第2课时)(二).docx_第1页
三角形内角和定理(第2课时)(二).docx_第2页
三角形内角和定理(第2课时)(二).docx_第3页
三角形内角和定理(第2课时)(二).docx_第4页
三角形内角和定理(第2课时)(二).docx_第5页
资源描述:

《三角形内角和定理(第2课时)(二).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第七章平行线的证明5.三角形内角和定理(第2课时)萧县帽山初级中学靳美侠一、学情分析学生技能基础:学生在前面的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,学习了三角形内角和定理的证明以及相关应用,有相关知识的基础,并具有一定的逻辑思维能力和严谨推理习惯,为今天的学习奠定了良好的基础.活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流相结合、实践和理性证明相结合的学习方式,学生具有较熟悉的活动经验.二、教材分析在前面的学习中,学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为

2、今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《关注三角形的外角》旨在利用已经学习过的知识来推导出新的定理以及运用新的定理解决相关问题。三、教学目标知识与技能1.掌握三角形外角的两条性质;2.进一步熟悉和掌握证明的步骤、格式、方法、技巧.3.灵活运用三角形的外角和两条性质解决相关问题。过程与方法在探究三角形外角的性质定理的过程中,进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识。情感、态度与价值观通过在数学活动中进行教学,使学生能自主地“做数学”,特别是培养有条理的想象和探索能力,从

3、而做到强化基础,激发学习兴趣.6教学重点:三角形外角的两条性质,以及证明的步骤、格式、方法、技巧。教学难点:灵活运用三角形的外角和两条性质解决相关问题。教学方法:合作探究法、数形结合法教具准备:三角板、多媒体课件四、教学过程分析本节课的设计分为四个环节:情境引入一一探索新知一一反馈练习一一课堂反思与小结教学过程一、巧设情景、导入新课上节课我们探究了三角形内角和定理,大家回忆一下他的证明思路是什么?活动内容:在证明三角形内角和定理时,用到了把4ABC的一边BC延长得到/ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.活动目的:引

4、出三角形外角的概念,并对其进行研究,激发学生学习兴趣。二、探究新知活动内容:①三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角,结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上.(2)一条边是三角形的一边.(3)另一条边是三角形某条边的延长线.②两个推论及其应用由学生探讨三角形外角的性质:6问题1:如图,△ABC中,/A=70°,/B=60°,/ACD®△ABC的一个外角,能由/A、/B求出/ACD吗?如果能,/ACDW/A、/B有什么关系?Bc口66问题2:任意一个△ABC的一个外角/ACDW/A、/B的大小会有

5、什么关系呢?由学生归纳得出:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.例1、已知:/BAF,/CBD,/ACE是4ABC的三个外角.求证:/BAF+/CBD+/ACE=360分析:把每个外角表示为与之不相邻的两个内角之和即得证.证明:(略).例2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,/A=62。,/ACD=35。,/ABE=20.求:(1)/BDC度数;(2)/BFD度6解:(略).活动目的:通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等

6、和不等的不同角度对三角形作更全面的思考.课堂练习活动内容:BC①已知,如图,在三角形ABC中,AD平分外角/EAC,/B=/C.求证:ADII分析:要证明AD//BC,只需证明“同位角相等",即需证明/DAE=/B.证明:=/EAC=/B+/C(三角形的一个外角等于和它不相邻的两个内角的和)/B=/C(已知)/B=1/EAC(等式的性质)2.「AD平分/EAC(已知)・•./DAE=1/EAC(角平分线的定义)2・•./DAE=/B(等量代换)•.AD//BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直

7、线平行”来证证明:=/EAC=/B+/C(三角形的一个外角等于和它不相邻的两个内角的和)/B=/C(已知)/C=1/EAC(等式的性质)2.「AD平分/EAC(已知)/DAC=-/EAC(角平分线的定义)2・•./DAC=/C(等量代换)•.AD//BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:=/EAC=/B+/C(三角形的一个外角等于和它不相邻的两个内角的和)/B=/C(已知)/C=1/EAC(等式的性质)26.「AD平分/EAC(已知)1・./DAC='/EAC2・•./DAC=/C(等量代换).•/B+/BAC

8、+/C=180°.・/B+/BAC+/DAC=180°即:/B+/DAB=180°「.AD//BC(同旁内角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。