欢迎来到天天文库
浏览记录
ID:6227709
大小:29.00 KB
页数:7页
时间:2018-01-07
《轨道车辆牵引电机负载模拟控制探究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、轨道车辆牵引电机负载模拟控制探究 摘要:牵引电机负载模拟是轨道车辆牵引传动系统半实物仿真中不可缺少的重要技术手段,不仅成本低,而且受外部环境的影响较小,具有很高的可行性,随着轨道工程的发展,电机负载模拟控制的研究成为社会关注的广泛话题。在本文中,笔者结合自身经验,从轨道车辆电机负载模拟技术的发展现状出发,分析了电机负载模拟的原理,并分别从电机负载的力学控制研究、电机负载的功率控制研究以及电机等效阻力负载与等效惯性负载研究等三个方面阐述了轨道车辆牵引电机负载模拟的控制,与同行共勉。关键词:轨道车辆电机负载牵引中图分类号:U213文献标识
2、码:A文章编号:1电机负载模拟技术仿真发展现状7随着社会的发展,铁路事业呈现出蓬勃发展的趋势,在交通领域、国防领域以及工业领域等都有涉及,正所谓有需求采用市场,这为负载技术的研究奠定了良好的基础。轨道车辆的负载模拟是技术是一种基于实物基础上的试验技术,需要在实验条件下完成加载,并且服务于加载对象。从专业的角度来说,它突破了传统试验设备的障碍,受到环境的约束性较小,对于在线测试存在一定难度的测验来说,负载模拟技术的研究是一次全新的革命。就负载模拟而言,国内外的著名专家对其展开了系统的研究和讨论,并且形成了初步的成果,目前正在使用的负载模拟
3、技术主要分为两种形式,分别是液压负载模拟(Eleetro一HydrostatieAetuators,EHA)和电动负载模拟两种(EleetricalpoweredActuators,EPA)。在电子技术的发展前提下,轨道车辆电机控制技术得到了很大的提升。就直流电机而言,除了对于道路事业的贡献之外,还实现了对恒转矩负载、线性负载以及风扇泵机类负载的模拟,并且在各个领域得到了广泛的应用。由于电机转速较低、力矩波动较小,在堵转的环境下同样可以运行,实现了恶劣环境下的同步运行。2电机负载模拟控制系统的原理分析7电机负载模拟系统的原理是能量转换的
4、过程,在直流电或者交流电的条件下同样适用。在此过程中,转矩承担了加载的角色,对于电机牵引负载的模拟进而转变为对转矩的持续加载过程,从而将电能的输入转化为机械能的输出,进而出现了电机的牵引力。从这个角度上来说,电机负载模拟是一个被动的过程,它的核心控制系统是转矩控制系统,鉴于其力矩为主动加载的过程,所以,电机模拟控制中结合了被动控制和主动控制,如何将两者统一协调起来成为电机负载工作的关键。此外,机械性是电机负载模拟的一大特性,主要目的在于补偿承载对象速度变化中产生的电机反电动势。在车辆牵引电机运行的过程中,电机的工作状态除了和车辆本身的特
5、性紧密相关之外,如车辆的形状、吨位等,还与线路条件的因素有关,此外,车辆运行中的速度变化对于牵引电机的负载模拟也有较大的影响。因此,对于负载电机而言,需要根据转速中输出的信号指示,正确输出同时符合运行阻力特性和车辆惯性的负载转矩。3电机负载模拟控制系统的仿真研究3.1电机负载的力学控制研究7将车轮看成一个整体的系统,由牛顿第二定律可得F-f=Ma,其中F为车辆受到的整体牵引力,单位为N(牛顿);f为车辆受到的阻力,包括轨道面摩擦阻力以及运行中的风的阻力,单位为N(牛顿);M为车辆的质量,单位为kg(千克);a为车辆直线加速度,单位为m/
6、s2。为了便于分析,在电机的力学方程中,一般将公式写成Ft-fm=ma,其中Ft为单动轴输出轮周牵引力,单位为N(牛顿);fm为单动轴分配阻力,单位为N(牛顿),该公式通常称之为平动方程,平动是指物体在运动过程中,其上任意两点的连线在各个时刻的位置始终平行的运动,在本文中符合轨道车辆运动的规律。对于车轴的运动,其动力学方程为Fmwrg1-FtR=Jwαw,其中Fmw为电机通过主动齿轮时所产生的对从动齿轮的作用力,单位为N(牛顿);rg1为从动齿轮的半径,单位为m;Ft为单动轴输出轮周时所产生的牵引力,单位为N(牛顿);R为车轮的半径,单
7、位为m;Jw为轮对与从动机构的转动惯量之和,单位为kg·m2;αw为车轮的转动角加速度,单位为rad/s.另外,=,ωw=vw/R。将上述公式联立方程,即可得到=+。由公式可得,的值不仅取决于转矩,还和轨道车辆的质量及其所受到的阻力有关。在车辆实际的运输过程中,为了确保车辆运行的安全和平稳,避免发生滑行状况,的大小还需要受到粘着系数的控制。此外,考虑到负转矩Tm以及齿轮的影响,需要乘以ηGear,即可得到电机的负载转矩为=[]3.2电机负载的功率控制研究在电机负载功率大小的控制中,旨在求出牵引电机所受到的实际负载,在研究的过程中,主要从
8、动能定理出发,其中可以将轨道车辆看成一个平动的系统,则其功率方程可写成v-fv=(),而轨道车辆在转动过程中,其功率方程可以表示为:-=(),主动轮在转动过程中所产生的功率为:=()7将电机负载的平动系统功
此文档下载收益归作者所有