欢迎来到天天文库
浏览记录
ID:62258233
大小:19.00 KB
页数:4页
时间:2020-02-27
《高中物理质点的运动知识整理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中物理质点的运动知识整理一、质点的运动------直线运动 1)匀变速直线运动 1.平均速度v平=s/t(定义式)2.有用推论vt2-vo2=2as 3.中间时刻速度vt/2=v平=(vt+vo)/24.末速度vt=vo+at 5.中间位置速度vs/2=[(vo2+vt2)/2]1/26.位移s=v平t=vot+at2/2=vt/2t 7.加速度a=(vt-vo)/t{以vo为正方向,a与vo同向(加速)a0;反向则a0} 8.实验用推论s=at2{s为连续相邻相等时间(t)内位移之差} 9.主要物理
2、量及单位:初速度(vo):m/s;加速度(a):m/s2;末速度(vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(vt-vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 2)自由落体运动 1.初速度vo=02.末速度vt=gt3.下落高度h=gt2/2(从vo位置向下计算)4.推论vt2=2gh 注:(1)自
3、由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s210m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=vot-gt2/22.末速度vt=vo-gt(g=9.8m/s210m/s2) 3.有用推论vt2-vo2=-2gs4.上升最大高度hm=vo2/2g(抛出点算起) 5.往返时间t=2vo/g(从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理
4、:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。高中物理教学中,圆周运动问题既是一个重点,又是一个难点,下面是学识网小编给大家带来的高中物理圆周运动知识点总结,希望对你有帮助。 二 质点运动之――圆周运动 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率
5、(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,
6、由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向
7、是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才能到达最高点,否则小球就会在圆周上的某一点(这一点一定在水平直径以上)绳子的拉力为零时,小球就脱离圆周轨道。 (2)物体在杆或圆管的环形轨道上作竖直面内圆周运动,虽然物体从最低点沿圆周向最高点运动的过程中,速度越来越小,由于物体可以受到杆的拉力和压力(或圆管对它的向内或向外的作用力),所以,物体在圆周上的任意一点的速度均可为零。 (3)物体在竖直的圆周的外壁运动,此种运动的关键是要区别做圆周运动和平抛运动的条件,它们的临界状态是物体
8、的重力沿半径的分量提供向心力,此时,轨道对物体没有作用力,但物体又在轨道上,该点是物体在圆周上的临界点。若物体在最高点时,mg=,v0=,当v≥v0,物体在最高点处将作平抛运动,当v 扩展 竖直面内的圆周运动,只要求讨论分析最高点和最低点的情况,由于最高点的相信加速度竖直向下,质点总是处于失重状态;最低点的向心加速度竖直向上,质点总是处于超
此文档下载收益归作者所有