欢迎来到天天文库
浏览记录
ID:62248015
大小:67.05 KB
页数:4页
时间:2021-04-22
《内切球和外接球例题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、。高考数学中的内切球和外接球问题一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________27..例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.43.2、求长方体的外接球的有关问题例3(2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.14.例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().C.A.16B.20C.24D.323.求
2、多面体的外接球的有关问题例5.一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的9顶点都在同一个球面上,且该六棱柱的体积为8,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为x,高为h,则有6x3,x1,932h,2164xh.r83∴正六棱柱的底面圆的半径2,球心到底面的距离d3r2d21.V球42.∴外接球的半径R3.二、构造法(补形法)1、构造正方体例5(2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是9_______________.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体
3、的外接球就是三棱锥的外接球.设其外接球22229R29的半径为R,则有2R3334.故其外接球的.∴表面积S4R29.-可编辑修改-小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2Ra2b2c2.出现“墙角”结构利用补形知识,联系长方体。【例题】:在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。解:因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为的长即:所以球的表面积为例6.一个四面
4、体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()A.3B.4C.33D.6解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,四面体ABDE满足条件,即。AB=AD=AE=BD=DEBE2,由此可求得正方体的棱长为1,体对角线为3,从而外接球的直径也为3,所以此球的表面积便可求得,故选A.例7.在等腰梯形ABCD中,AB=2DC=2,DAB=600,E为AB的中点,将ADE与BEC分布沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球
5、的体积为().43666A.27B.2C.8D.24解析:因为AE=EB=DC=1,DAB=CBE=DEA=600,所以ADAE=EB=BC=DC=DE=CE=1,即三棱锥P-DCE为正四面体,至此,这与例6就完全相同了,故选C.例8.已知球O的面上四点A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=3,则球O的体积等于.解析:本题同样用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA平面ABC,ABBC,联想长方体中的相应线段关系,构造长方体,又因为DA=AB=BC=3,则此长方体为正方体,所以CD长即为外接球的直径,利用直角三角形解出CD=
6、3.故球O的体积等-可编辑修改-。9于2.2、构造长方体例9.已知点A、B、C、D在同一个球面上,AB平面BCD,BCDC,若AB6,AC=213,AD=8,则球的体积是.解析:首先可联想到例8,构造下面的长方体,于是AD为球的直径,O为球心,OB=OC=4为半径,要求B、C两点间的球面距离,只要求出BOC即可,在RtABC中,求出BC=4,所以BOC=600,故B、C两点间的球面距4离是3.三.多面体几何性质法例10.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16B.20C.24D.32解设正四棱柱的底面边长为x,外接球的半径为R,则有4x216,解得x
7、2.∴2R22224226,R6.∴这个球的表面积是4R224.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.四.寻求轴截面圆半径法例11.正四棱锥SABCD的底面边长和各侧棱长都为2,点S、A、B、C、D都在同一球面上,则此球的体积为.S解设正四棱锥的底面中心为O1,外接球的球心为O,如图1DCOO1平面ABCD所示.∴由球的截面的性质,可得.O1A图3B又
此文档下载收益归作者所有