资源描述:
《高等代数(北大版)第5章习题参考答案[1].docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。1)4x1x22x1x32x2x3;2)x122x1x22x224x2x34x32;3)x123x222x1x22x1x36x2x3;4)8x1x42x3x42x2x38x2x4;5)x1x2x1x3x1x4x2x3x2x4x3x4;6)x122x22x424x1x24x1x32x1x42x2x32x2x42x3x4;7)x12x22x32x422x1x22x2x32x3x4。解1)已知fx1,x2,x34x1x22x1x32x2x3,先作非退化线性替换
2、x1y1y2x2y1y2(1)x3y3则fx1,x2,x34y124y224y1y34y124y1y3y32y324y222y1y33y324y22,再作非退化线性替换y11z11z322y2z2(2)y3z3则原二次型的标准形为fx,x2,x3z24z2z2,1123最后将(2)代入(1),可得非退化线性替换为x11z1z21z322x21z21(3)z1z322x3z3于是相应的替换矩阵为1011011102222T110111100,00100120201且有100TAT040。0012)已知fx1,x2,x3x122x1x
3、22x224x2x34x32,由配方法可得fx1,x2,x3x122x1x2x22x224x2x34x32x1x2x22x2,23于是可令y1x1x2y2x22x3,y3x3则原二次型的标准形为fx1,x2,x3y12y22,且非退化线性替换为x1y1y22y3x2y22y3,x3y3相应的替换矩阵为112T012,001且有100110112100TAT110122012010。221024001000(3)已知fx1,x2,x3x123x222x1x22x1x36x2x3,由配方法可得fx,x,x3x22xx22xx32xxx
4、2x24x24x2xx2121112323233x1x2x322x2x32,于是可令y1x1x2x3y22x2x3,y3x3则原二次型的标准形为fx1,x2,x3y12y22,且非退化线性替换为x1y11y23y322x21y21y3,22x3y3相应的替换矩阵为1132211T0,22001且有11310011122100110133011010。TAT222213000003110122(4)已知fx1,x2,x3,x48x1x22x3x42x2x38x2x4,先作非退化线性替换x1y1y4x2y2,x3y3x4y4则fx1
5、,x2,x3,x48y1y48y422y3y42y2y38y2y428y422y41y11y21y31y11y21y322822881y11y21y322y2y322881y11y21y321y32y42y1y22y2y3,2284再作非退化线性替换y1z1y2z2z3,y3z2z3y4z4则81z15z23z325z23z32fx1,x2,x3,x4z42z1288442z222z32,再令w1z15x23x344w2z2,w3z3w41z15z23z3z4288则原二次型的标准形为fx1,x2,x3,x42w122w222w3
6、28w42,且非退化线性替换为x11w15w23w3w4244x2w2w3,x3w2w3x41w1w42相应的替换矩阵为15312440011T11,0010012且有20000200TAT02。000008(5)已知fx1,x2,x3,x4x1x2x1x3x1x4x2x3x2x4x3x4,先作非退化线性替换x12y1y2x2y2,x3y3x4y4则fx1,x2,x3,x42y1y2y222y1y32y2y32y1y42y2y4y3y423y42y1y2y3y42y31y4y12,24再作非退化线性替换z1y1z2y1y2y3y4
7、z3y31y4,2z4y4即y1z1y2z1z2z31z42,1y3z3z42y4z4则原二次型的标准形为fx1,x2,x3,x4z12z22z323z42,4且非退化线性替换为x1z1z2z31z42x2z1z2z31z4,2x3z31z4x4z42相应的替换矩阵为11112T11112,001120001且有1000TAT01000010。00034(6)已知fx1,x2,x3,x4x122x22x424x1x24x1x32x1x42x2x32x2x42x3x4,由配方法可得fx1,x2,x3,x4x22x2x22x3x2x2
8、2xx2114342x22x3x422x22x422x2x32x2x42x3x43x31x42x12x22x3x422x21x3x42,222于是可令y1x12x22x3x4y2x23x31x4,22y3x3x4y4x4则原二次型的标准形为fy12