资源描述:
《运筹学课后习题解答_1.(DOC).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、运筹学部分课后习题解答P471.1用图解法求解线性规划问题minz=2x13x2a4x16x26)2x24st..4x1x1,x20解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为3zmin=23032P471.3用图解法和单纯形法求解线性规划问题maxz=10x15x2a)3x14x295x12x28st..x1,x20解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,3x14x2x11T93,即最优解为x*1,3即2x28x225x12这时的最优值为zmax=101533522单纯形
2、法:原问题化成标准型为maxz=10x15x23x14x2x39st..5x12x2x48x1,x2,x3,x40cj10500CBXBbx1x2x3x40x3934100x48[5]201CjZj105000x321/50[14/5]1-3/510x18/512/501/5CjZj010-25x23/2015/14-3/1410x1110-1/72/7CjZj00-5/14-25/141,3T1015335所以有x*,zmax222P782.4已知线性规划问题:maxz2x14x2x3x4x13x2x482x1x26x2x3x46x1x2x39x1,x2,x3,x40求:(1
3、)写出其对偶问题;(2)已知原问题最优解为X*(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。解:(1)该线性规划问题的对偶问题为:minw8y16y26y39y4y12y2y423y1y2y3y44y3y41y1y31y1,y2,y3,y40(2)由原问题最优解为X*(2,2,4,0),根据互补松弛性得:y12y2y423y1y2y3y44y3y41把X*(2,2,4,0)代入原线性规划问题的约束中得第四个约束取严格不等号,即22489y40y12y22从而有3y1y2y34y31得y4,y23,y31,y01554(4,3,1,0)T,最优值为wmin16所以
4、对偶问题的最优解为y*55P792.7考虑如下线性规划问题:minz60x140x280x33x12x2x324x1x23x342x12x22x33x1,x2,x30(1)写出其对偶问题;(2)用对偶单纯形法求解原问题;解:(1)该线性规划问题的对偶问题为:maxw2y14y23y33y14y22y3602y1y22y340y13y22y380y1,y2,y30(2)在原问题加入三个松弛变量x4,x5,x6把该线性规划问题化为标准型:maxz60x140x280x33x12x2x3x424x1x23x3x542x12x22x3x63xj0,j1,L,6cj-60-40-8000
5、0CBXBbx1x2x3x4x5x60x4-2-3-2-11000x5-4[-4]-1-30100x6-3-2-2-2001CjZj-60-40-800000x410-5/45/41-1/12080x1111/43/40-1/400x6-10[-3/2]-1/20-1/21CjZj0-25-350-1500x411/6005/311/3-5/680x15/6102/30-1/31/640x22/3011/301/3-2/3CjZj00-80/30-20/3-50/3x*(5,2,0)T,zmax60540280023063633P812.12某厂生产A、B、C三种产品,其所需劳
6、动力、材料等有关数据见下表。要求:(a)确定获利最大的产品生产计划;(b)产品A的利润在什么范围内变动时,上述最优计划不变;(c)如果设计一种新产品D,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产?(d)如果劳动力数量不增,材料不足时可从市场购买,每单位0.4元。问该厂要不要购进原材料扩大生产,以购多少为宜。消耗产品ABC可用量(单位)定额资源劳动力63545材料34530产品利润(元/件)314解:由已知可得,设xj表示第j种产品,从而模型为:maxz3x1x24x36x13x25x345st..3x14x25x330x1,x2,x30a)
7、用单纯形法求解上述模型为:31400cjCBXBbx1x2x3x4x504563510x403034[5]01x5CjZj31400015[3]-101-1x4463/54/5101/5x3CjZj3/5-11/500-4/5351-1/301/3-1/3x143011-1/52/5x3CjZj0-20-1/5-3/5得到最优解为x*(5,0,3)T;最优值为zmax354327b)设产品A的利润为3,则上述模型中目标函数x1的系数用3替代并求解得:cj31400CBXBbx1x2x3x4x