欢迎来到天天文库
浏览记录
ID:62145511
大小:3.48 MB
页数:73页
时间:2021-04-19
《最新武汉大学-模式识别-第五章-特征选择和提取教学讲义PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、武汉大学-模式识别-第五章-特征选择和提取第五章特征选择和提取特征选择和提取是模式识别中的一个关键问题前面讨论分类器设计的时候,一直假定已给出了特征向量维数确定的样本集,其中各样本的每一维都是该样本的一个特征;这些特征的选择是很重要的,它强烈地影响到分类器的设计及其性能;假若对不同的类别,这些特征的差别很大,则比较容易设计出具有较好性能的分类器。第五章特征选择和提取特征选择和提取是构造模式识别系统时的一个重要课题在很多实际问题中,往往不容易找到那些最重要的特征,或受客观条件的限制,不能对它们进行有效的测量;因此在测量时,由于人们心理上的作用,只要条件许可
2、总希望把特征取得多一些;另外,由于客观上的需要,为了突出某些有用信息,抑制无用信息,有意加上一些比值、指数或对数等组合计算特征;如果将数目很多的测量值不做分析,全部直接用作分类特征,不但耗时,而且会影响到分类的效果,产生“特征维数灾难”问题。第五章特征选择和提取以细胞自动识别为例通过图像输入得到一批包括正常细胞和异常细胞的图像,我们的任务是根据这些图像区分哪些细胞是正常的,哪些细胞是异常的;首先找出一组能代表细胞性质的特征,为此可计算细胞总面积总光密度胞核面积核浆比细胞形状核内纹理……第五章特征选择和提取以细胞自动识别为例这样产生出来的原始特征可能很多(
3、几十甚至几百个),或者说原始特征空间维数很高,需要降低(或称压缩)维数以便分类;一种方式是从原始特征中挑选出一些最有代表性的特征,称之为特征选择;另一种方式是用映射(或称变换)的方法把原始特征变换为较少的特征,称之为特征提取。5.1模式类别可分性的测度距离和散布矩阵点到点之间的距离点到点集之间的距离类内距离5.1模式类别可分性的测度距离和散布矩阵类内散布矩阵类间距离和类间散布矩阵多类模式集散布矩阵5.2特征选择设有n个可用作分类的测量值,为了在不降低(或尽量不降低)分类精度的前提下,减小特征空间的维数以减少计算量,需从中直接选出m个作为分类的特征。问题:
4、在n个测量值中选出哪一些作为分类特征,使其具有最小的分类错误?5.2特征选择从n个测量值中选出m个特征,一共有中可能的选法。一种“穷举”办法:对每种选法都用训练样本试分类一下,测出其正确分类率,然后做出性能最好的选择,此时需要试探的特征子集的种类达到种,非常耗时。需寻找一种简便的可分性准则,间接判断每一种子集的优劣。对于独立特征的选择准则一般特征的散布矩阵准则5.2特征选择对于独立特征的选择准则类别可分性准则应具有这样的特点,即不同类别模式特征的均值向量之间的距离应最大,而属于同一类的模式特征,其方差之和应最小。假设各原始特征测量值是统计独立的,此时,只
5、需对训练样本的n个测量值独立地进行分析,从中选出m个最好的作为分类特征即可。例:对于i和j两类训练样本的特征选择5.2特征选择讨论:上述基于距离测度的可分性准则,其适用范围与模式特征的分布有关。三种不同模式分布的情况(a)中特征xk的分布有很好的可分性,通过它足以分离i和j两种类别;(b)中的特征分布有很大的重叠,单靠xk达不到较好的分类,需要增加其它特征;(c)中的i类特征xk的分布有两个最大值,虽然它与j的分布没有重叠,但计算Gk约等于0,此时再利用Gk作为可分性准则已不合适。因此,假若类概率密度函数不是或不近似正态分布,均值和方差就不足
6、以用来估计类别的可分性,此时该准则函数不完全适用。5.2特征选择一般特征的散布矩阵准则类内、类间的散布矩阵Sw和Sb类间离散度越大且类内离散度越小,可分性越好。散布矩阵准则J1和J2形式使J1或J2最大的子集可作为所选择的分类特征。注:这里计算的散布矩阵不受模式分布形式的限制,但需要有足够数量的模式样本才能获得有效的结果作业设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求Sw和Sbω1:{(10)T,(20)T,(11)T}ω2:{(-10)T,(01)T,(-11)T}ω3:{(-1-1)T,(0-1)T,(0-2)T}5.3离散K-L变换全
7、称:Karhunen-Loeve变换(卡洛南-洛伊变换)前面讨论的特征选择是在一定准则下,从n个特征中选出k个来反映原有模式。这种简单删掉某n-k个特征的做法并不十分理想,因为一般来说,原来的n个数据各自在不同程度上反映了识别对象的某些特征,简单地删去某些特征可能会丢失较多的有用信息。如果将原来的特征做正交变换,获得的每个数据都是原来n个数据的线性组合,然后从新的数据中选出少数几个,使其尽可能多地反映各类模式之间的差异,而这些特征间又尽可能相互独立,则比单纯的选择方法更灵活、更有效。K-L变换就是一种适用于任意概率密度函数的正交变换。5.3离散K-L变换
8、5.3.1离散的有限K-L展开展开式的形式如果对c种模式类别{i}i=1,…,
此文档下载收益归作者所有