欢迎来到天天文库
浏览记录
ID:62142202
大小:5.47 MB
页数:78页
时间:2021-04-19
《最新智能控制--神经网络控制PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、智能控制--神经网络控制神经网络控制的优越性神经网络可以处理那些难以用模型或规则描述的过程或系统。神经网络采用并行分布式信息处理,具有很强的容错性。神经网络是本质非线性系统,可实现任意非线性映射。神经网络具有很强的信息综合能力,能同时处理大量不同类型的输入,并能很好解决输入信息之间的互补性和冗余性问题。神经网络的硬件实现愈趋方便。神经网络控制的研究领域基于神经网络的系统辨识将神经网络作为被辨识系统的模型,可在已知常规模型结构的情况下,估计模型的参数。利用神经网络的线性、非线性特性,可建立线性、非线性系统的静态、动态、逆动态及预测模型,实现非线性系统的建模
2、和辨识。神经网络控制器神经网络作为实时控制系统的控制器,对不确定、不确知系统及扰动进行有效的控制,使控制系统达到所要求的动态、静态特性。神经网络与其他算法相结合将神经网络与专家系统、模糊逻辑、遗传算法等相结合,可设计新型智能控制系统。传统控制器对象神经网络控制器+++-期望输出(2)神经网络直接逆控制将对象的神经网络逆模型直接与被控对象串联起来,使期望输出与对象实际输出之间的传递函数为1。缺点:无反馈,用作控制器的神经网络逆模型不准确时,抗干扰能力差,缺乏鲁棒性。两种改进结构方案:对象神经网络控制器神经网络控制器1对象神经网络辨识器2+-神经网络控制器对
3、象评价函数常规控制器对象神经网络估计器+-期望输出神经网络控制器对象稳定的参考模型+-+-期望输出参考模型输入神经网络间接模型参考自适应控制神经网络辨识器向神经网络控制器提供对象的Jacobian信息。神经网络控制器对象参考模型+-+-期望输出神经网络辨识器+-(4)神经网络内模控制正向模型作为被控对象的近似模型,与实际对象并联;控制器与对象的逆有关,可以是对象的逆;滤波器通常为线性的,可提高系统的鲁棒性。蓝色实线为基本原理图,加上绿色虚线后可构成内模控制的一种具体实现。神经网络控制器对象神经网络内模(辨识)+-滤波器+-+-非线性系统的神经网络辨识神经
4、网络辨识基础概念辨识:是在输入和输出数据的基础上,从一组给定的模型中,确定一个与所测系统等价的模型。辨识的三要素:数据:能量测到的被辨识系统的输入/输出数据,是辨识的基础。模型类:要寻找的模型的范围,即所考虑系统的结构。等价准则:辨识的优化目标,用来衡量模型接近实际系统的标准,也称误差准则或损失函数。神经网络辨识用神经网络作为被辨识对象的正模型、逆模型、预测模型等,也称为神经网络建模。说明:本质上,神经网络辨识的目的是建立所考查对象的模型,因此最简单的情况下,辨识只需利用对象本身的输入输出数据即可。神经网络建模本身不涉及诸如某一具体控制任务之类的其它目的
5、,因此与作为神经网络控制系统的结构框图相比,辨识的原理结构图要简单得多,只要能完成建模的任务即可;一般地,辨识结构图只涉及对象系统本身和所用的神经网络两大主体。建模的两种基本情况前向建模:建立系统本身的模型,也称正向建模;逆向建模:建立系统的逆模型。正向建模指利用神经网络逼近对象本身的动力学特性。简化结构图:网络与系统并联;输出之差用作训练信号;对网络而言,系统的实际输出构成了期望的导师信号,故为有导师学习;可用多层前馈神经网络实现;可进行离线辨识,也可进行在线辨识。对象神经网络辨识模型+-逆向建模一般而言,建立逆模型对神经网络控制意义重大。直接逆建模简
6、化结构图:可用于离线辨识,也可用于在线辨识。缺点:不是目标导向的,系统输入也不可能预先定义。实际常采用正-逆建模结构。对象神经网络逆模型+-对象神经网络正向模型+-神经网络逆模型+-离线辨识与在线辨识在线辨识是在对象系统实际运行的过程中进行的,辨识过程要求实时性,即必须在一个采样周期的时间间隔内至少进行一次网络权值的调整;离线辨识则是在取得对象系统的一批输入输出数据后再进行辨识,故辨识过程与实际系统是分离的,无实时性要求。离线辨识在系统工作前预先完成网络的学习或训练,但输入输出训练集很难覆盖对象所有可能的工作范围、且难以适应系统在工作过程中的参数变化,故
7、最好的辨识方式是:先进行离线训练、再进行在线学习,将离线训练得到的权值作为在线学习的初始权,以加快在线学习的速度。(由于网络具有学习能力,故当被辨识对象的特性变化时,神经网络也能通过不断地调整权值和阈值自适应地跟踪对象系统的变化。)对于神经网络控制系统,其中的辨识是以系统在闭环控制下所得到的观测数据进行的,因此一般属在线辨识。对于时变系统,则只能使用在线辨识。神经网络建模的考虑因素模型的选择精确性和复杂性的权衡;对神经网络辨识而言,权衡表现为网络隐含层数的选择和隐含层内节点的选择。权衡的有效途径:进行多次仿真实验。输入信号的选择时域上,要求输入信号持续加
8、在系统对象上,以便在辨识时间内充分激励系统的所有模态、反映系统对象的完整动态过程
此文档下载收益归作者所有