资源描述:
《最新新人教版九上-22.3实际问题与一元二次方程(3)课件课件ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新人教版九上-22.3实际问题与一元二次方程(3)课件解一元一次方程应用题的一般步骤?一、复习第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;第二步:找出能够表示应用题全部含义的相等关系;第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程;第四步:解这个方程,求出未知数的值;第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。一、复习引入1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形
2、的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?解:(1)方案1:长为米,宽为7米;方案2:长为16米,宽为4米;方案3:长=宽=8米;注:本题方案有无数种(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.x(16-x)=63+2,x2-16x+65=0,∴此方程无解.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米1、用20cm长的铁丝能否折成面积为30cm2的矩形,若能够,求它的长与宽;若不能,请说明理由.练习:解:设
3、这个矩形的长为xcm,则宽为cm,即x2-10x+30=0这里a=1,b=-10,c=30,∴此方程无解.∴用20cm长的铁丝不能折成面积为30cm2的矩形.例2:某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.补充例题与练习(1)(2)(1)解:(1)如图,设道路的宽为x米,则化简得,其中的x=25超出了原矩形的宽,应舍去.∴图(1)中道路的宽为1米
4、.则横向的路面面积为,分析:此题的相等关系是矩形面积减去道路面积等于540米2。解法一、如图,设道路的宽为x米,32x米2纵向的路面面积为。20x米2注意:这两个面积的重叠部分是x2米2所列的方程是不是?图中的道路面积不是米2。(2)而是从其中减去重叠部分,即应是米2所以正确的方程是:化简得,其中的x=50超出了原矩形的长和宽,应舍去.取x=2时,道路总面积为:=100(米2)草坪面积==540(米2)答:所求道路的宽为2米。解法二:我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于
5、实际施工,仍可按原图的位置修路)(2)(2)横向路面,如图,设路宽为x米,32x米2纵向路面面积为。20x米2草坪矩形的长(横向)为,草坪矩形的宽(纵向)。相等关系是:草坪长×草坪宽=540米2(20-x)米(32-x)米即化简得:再往下的计算、格式书写与解法1相同。练习:1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?解:设道路宽为x米,则化简得,其中的x=35超出了原矩形的宽,应舍去.答:道路的宽为1米.练习:
6、2.如图,长方形ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.ABCD解:设小路宽为x米,则化简得,答:小路的宽为3米.补充例题与练习例3.(2003年,舟山)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为S米2,(1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的长是多少米?【解析】(1)设宽AB为x米,则BC为(24-3x)米,这时面积S=x(24-3x)=-3x2+24x(2)由
7、条件-3x2+24x=45化为:x2-8x+15=0解得x1=5,x2=3∵0<24-3x≤10得14/3≤x<8∴x2不合题意,AB=5,即花圃的宽AB为5米练习:1.如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎么设计?解:设苗圃的一边长为xm,则化简得,答:应围成一个边长为9米的正方形.例4.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道
8、挖完?补充例题与练习分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,