电力系统故障诊断探究现状和发展趋势

电力系统故障诊断探究现状和发展趋势

ID:6212575

大小:29.00 KB

页数:7页

时间:2018-01-06

电力系统故障诊断探究现状和发展趋势_第1页
电力系统故障诊断探究现状和发展趋势_第2页
电力系统故障诊断探究现状和发展趋势_第3页
电力系统故障诊断探究现状和发展趋势_第4页
电力系统故障诊断探究现状和发展趋势_第5页
资源描述:

《电力系统故障诊断探究现状和发展趋势》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、电力系统故障诊断探究现状和发展趋势  【摘要】文章综述了电力系统故障诊断的各种研究方法,评述了这些方法中需要改进之处,并进一步指出了该领域所需解决的关键技术问题和主要发展趋势。【关键词】电力系统;故障诊断;研究现状;发展趋势中图分类号:F407文献标识码:A文章编号:引言电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。1国内外研究发

2、展状况1.1基于专家系统的诊断方法专家系统(expertSystem)利用专家推理方法的计算机模型来解决问题,已获得日益广泛的应用。目前,专家系统用于电力系统故障诊断是比较成功的。根据故障诊断的知识表示和所用推理策略的不同,专家系统主要有两类:7(1)基于启发式规则推理的系统。此类系统把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,采用数据驱动的正向推理将所获得的征兆与知识库中的规则进行匹配,进而获得故障诊断的结论。现在大多数故障诊断属于这一类。(2)结合正、反推理的系统。此类系统结合了正反向混合推理方法,根据断路器和继电保

3、护与被保护设备之间的逻辑关系建立推理规则,同时通过反向推理,有效地缩小可能故障的范围,以动作的继电保护与故障假设的符合程度计算可信度。文献[1]介绍了基于事例推理(CBR)和基于规则推理(RBR)的混合推理的故障诊断专家系统。由于采用了混合推理,提高了故障诊断专家系统的适应性与自学习能力。基于专家系统的诊断方法的主要特点是可以方便地把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,并允许在知识库中增加、删除或修改一些规则,以确保诊断系统的实时性和有效性,同时还能够给出符合人类语言习惯的结论,并具有相应的解释能力等,比较适合中小型电力系统和变电站的故障诊断。

4、该方法在实际应用中仍然存在如下主要缺陷:①建立知识库及验证其完备性比较困难;②容错能力较差,缺乏有效的方法识别错误信息;③大型专家系统的知识库的维护难度很大;④专家系统在复杂故障诊断任务中会出现组合爆炸和推理速度慢的问题。这些缺陷使得专家系统难以满足大规模电力系统在线故障诊断的需要,目前主要应用于离线故障分析。71.2基于人工神经网络的诊断方法与专家系统相比,基于人工神经网络(ANN—artifieialneuralnetwork)的故障诊断方法具有鲁棒性好、容错能力强和学习能力强等特点。目前应用于电力系统故障诊断的ANN有:基于BP(baekpropagation)

5、算法的前向神经网络和基于径向基函数的神经网络等。文献[1]给出了典型的故障诊断神经网络BP模型,其实现方法是:以电力系统继电保护信息作为ANN的输人,以可能发生的故障作为其输出,选择适当的样本集训练ANN。整个训练过程为:首先根据网络当前的内部表达,对输人样本进行前向计算;然后比较网络的输出与期望输出之间的误差,若误差满足条件,则训练结束,否则,将误差信号按原有的通路反向传播,逐层调整权值和阑值,如此反复,直至达到误差精度要求。文献[2]将大型输电网络分区,对各个区域分别建立基于BP算法的故障诊断网络,然后综合获得最终的故障诊断结果。7基于ANN的诊断方法的主要特点是

6、避免了专家系统故障诊断所面临的知识库构造等难题,不需要推理机的构造。由于用于ANN训练的完备样本集获取困难,目前该方法只比较适合中小型电力系统的故障诊断。ANN方法在故障诊断应用中存在的问题主要是:①其性能取决于样本是否完备,而大型的电力系统的完备样本集获取非常困难;②与符号数据库交互的功能较弱;③不擅长处理启发性的知识;④不知如何确保ANN训练时收敛的快速性和避免陷人局部最小;⑤缺乏解释自身行为和输出结果的能力。以上缺点限制了ANN故障诊断方法在线应用于大型电力系统。如何设计适用于大型电力系统的故障诊断系统,仍然是一个有待进一步研究的问题。1.3基于粗糙集理论的诊断

7、方法粗糙集理论(roughSettheory)是波兰Z.Pawlak教授于1982年提出的一种处理不完整性和不确定性问题的新型数学工具。粗糙集理论的主要思想:在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。它无需提供问题所需处理的数据集合之外的任何先验信息,能有效地分析和处理不精确、不一致、不完整等各种不完备数据,从中发现隐含知识,揭示潜在规律。鉴于粗糙集理论的优越性,已经有不少研究人员把它引人到故障诊断系统中。文献[3][4]把粗糙集理论应用于电力系统故障诊断和警报处理,尝试应用粗糙集理论来处理因保护装置和断路器误动作、信号传输

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。