最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt

最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt

ID:62083852

大小:932.50 KB

页数:35页

时间:2021-04-14

最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt_第1页
最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt_第2页
最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt_第3页
最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt_第4页
最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt_第5页
资源描述:

《最新《空间中直线与直线之间的位置关系》ppt教学讲义PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《空间中直线与直线之间的位置关系》ppt复习引入:1、同一平面内不重合两条直线有几种位置关系?2、在同一平面内,同平行于一条直线的两条直线有什么位置关系?(1)、相交:有且仅有一个公共点。(2)、平行:在同一平面内没有公共点。互相平行提出问题:空间中的两条直线呢?1.空间中两条直线的位置关系观察:观察教室内的日光灯管所在直线与黑板的左右两侧所在的直线,想一想:它们相交吗?平行吗?共面吗?2.下图是一个正方体的展开图,如果将它还原成正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有几对?想

2、一想,做一做:HGFEDCBA三对AB与CDAB与GHEF与GH3.空间两条直线的位置关系有且只有三种平行相交异面位置关系公共点个数是否共面没有只有一个没有共面不共面共面空间中两条直线的位置关系2. 空间两平行直线提出问题:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?平行吗?中,观察:如图2.1.2-5,长方体与那么DD'∥AA'BB'∥AA'公理4:平行于同一条直线的两条直线互相平行。公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理

3、4作用:判断空间两条直线平行的依据。a∥bc∥ba∥c符号表示:设空间中的三条直线分别为a,b,c,若想一想:空间中,如果两条直线都与第三条直线垂直,是否也有类似的规律?例题示范例1:在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是平行四边形。ABDEFGHC例题示范例1:在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是平行四边形。ABDEFGHC∵EH是△ABD的中位线∴EH∥BD且EH=BD同理,FG∥B

4、D且FG=BD∴EH∥FG且EH=FG∴EFGH是一个平行四边形证明:连结BD变式一:在例2中,如果再加上条件AC=BD,那么四边形EFGH是什么图形?EHFGABCD菱形变式二:空间四面体A--BCD中,E,H分别是AB,AD的中点,F,G分别是CB,CD上的点,且,求证:四边形ABCD为梯形.ABCDEHFG3. 等角定理提出问题:在平面上,我们容易证明“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”。在空间中,结论是否仍然成立呢?观察思考:如图,∠ADC与∠A'D'C'、∠AD

5、C与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?3. 等角定理定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。3. 等角定理定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.4. 异面直线所成的角如图,已知两条异面直线a,b,经过空间任一点O作直线a'∥a,b'∥b,我们把a'与b'所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角)。为了简便,点O通常取在两

6、条异面直线中的一条上,例如,取在直线b上,然后经过点O作直线a'∥a,a' 和b所成的锐角(或直角)就是异面直线a与b所成的角。想一想:a'与b' 所成角的大小与点O的位置有关吗?4. 异面直线所成的角如果两条异面直线所成的角为直角,就说两条直线互相垂直,记作a⊥b。例题示范例2、如图,已知正方体ABCD-A'B'C'D' 中。(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA' 和CC' 的夹角是多少?(3)哪些棱所在的直线与直线AA' 垂直?解:(1)由异面直线的判定方法可知,与直线成异面直

7、线的有直线,例题示范例2、如图,已知正方体ABCD-A'B'C'D' 中。(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA' 和CC' 的夹角是多少?(3)哪些棱所在的直线与直线AA' 垂直?解:(2)由可知,等于异面直线与的夹角,所以异面直线与的夹角为450。(3)直线与直线都垂直.练习反馈:1.判断:(1)平行于同一直线的两条直线平行.()(2)垂直于同一直线的两条直线平行.( )(3)过直线外一点,有且只有一条直线与已知直线平行 . ()(4)与已知直线平行且距离等于定长的直线只有两条.

8、    ()(5)若一个角的两边分别与另一个角的两边平行,那么这两个角相等()(6)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.(   )√×√√××练一练,巩固新知:P48页练习1,2题。例3: 如图,是平面外的一点分别是的重心,求证:。证明:连结分别交于,连结,∵G,H分别是⊿ABC,⊿ACD的重心,∴M,N分别是BC,CD的中点,∴MN//BD,又∵∴GH//MN,由公理4知GH//BD.练习反馈:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。