资源描述:
《最新《数据挖掘及其应用讲义》应用-关联规则教学讲义ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《数据挖掘及其应用讲义》应用-关联规则1关联规则设I={I1,I2,…,Im}是一组数据项集合,D是与任务相关的数据集合,也称为交易数据库。其中每个交易T是一个数据项子集,T∈I。关联规则是如下形式的一种蕴含:AB,表示Ifconditionsthenresult其中A∈I,B∈I,且A∩B=。一般用支持度、可信度、期望可信度、作用度4个参数来描述一个关联规则的属性。2.2Apriori算法Apriori算法是一个基于两阶段频繁项集的数据挖掘方法,将关联规则挖掘算法分为两部分:一是找到所有支持度大于最小支持度的项集,称
2、为频繁项集,二是使用第一步找到的频繁项集产生期望规则.Apriori算法的性质:如果一个项集是频繁的,则它的所有子集也是频繁的。首先,给定最小支持度及最小可信度。返回第一步:找频繁项集由数据库读入所有的交易,得出候选单项集的支持度,再找出频繁单项集,并利用这些频繁单项集的结合,产生候选2项集,若候选2项集的支持度大于或等于最小支持度,则该候选项集为频繁项集,即为频繁2项集,并利用频繁2项集的结合,产生候选3项集,若候选3项集的支持度大于或等于最小支持度,则该候选项集为频繁3项集,并利用高频3项集的结合,产生候选4项,…
3、…,最后产生频繁多项集,再结合产生下一级候选项集,直到新产生的候选项集的支持度小于给定的最小支持度,则不再结合产生新的候选项集,算法结束。第二步:由频繁项集产生期望规则(1)对于每个频繁项集L,产生L的所有非空子集;(2)对于L的每个非空子集S,如果其可信度大于最小可信度,则输出规则”sL-s”(一)Apriori算法在学生成绩分析中的应用研究学生的各科考试成绩一直以来作为国内各高等院校评价学生学业以及综合素质的重要指标,各高校经过长期的积累都储存了大量的学生成绩信息,但对成绩的分析处理一般还停留在简单的查询和统计阶
4、段,例如统计优、良、及格、不及格等级别的人数以及计算平均成绩、标准差等指标,而对于学生取得这些成绩与课程之间的关系有无关联往往没有深入了解。如果能够合理开发利用这些数据,找到课程之间的相关关系对学生成绩的影响,必将对课程的设置与安排具有重大的指导意义。1研究对象以沈阳农业大学01届计算机专业学生在校四年的学习成绩作为数据源,选取成绩数据库中《计算机网络》、《外语》、《工科高数》、《计算机基础》、《操作系统》等8门课程作为研究对象,挖掘出某门课程对于其他课程的影响程度,为教务人员以后安排课程提供参考,为学生选课提供指导。
5、2数据预处理2.1数据清理原始数据库中包含全校各个专业、各个年级、各门课程的所有成绩,某些记录难免会有一些差错或者从经验上看没有关联,为了便于进行数据挖掘,只选取01届计算机专业学生的《计算机网络》等8门课程成绩作为挖掘对象,去掉所有其他不必要的字段,删除空白以及数据有缺失的记录。清理后的数据表部分数据如图1所示。图1原始数据表2.2数据转换学生成绩是以数值形式表示的,不便于进行数据挖掘,因此对各科成绩进行离散化处理,即转换为优、良、中、及格、不及格5个等级。大于90分的为“优”,80~90分之间的为“良”,70~80
6、分之间的为“中”,60~70分之间的为“及格”,小于60分的为“不及格”。“优、良、中、及格、不及格”5个等级分别用数字“1、2、3、4、5”表示,用“A”表示计算机网络,“B”表示数据结构,“C”表示计算机基础,“D”表示外语,以此类推。将各科目字段设置为字符型,转换后的数据表部分数据如图2所示。图2转换后数据表3研究方法3.2Apriori算法应用用宽度优先的迭代搜索方法,首先找出频繁1-项集L1,用L1查找频繁2-项集L2,以此类推,直到求出所有的频繁项目集。若发现某频繁项集的数目为零,则停止计算。最后,输出所有
7、项目的频繁集。在该程序中依然运用了Apriori算法的性质:如果一个项集是频繁的,则它的所有子集也是频繁的。设最小支持度为0.3,产生频繁项目集56个,从产生的频繁项集中确定它们的子集,然后根据关联规则挖掘算法原理,设最小可信度为0.6,由程序得出关联规则18个,部分规则如表1所示。4结果与分析规则1说明,《数据结构》成绩在80~90分之间,《高级语言程序设计》成绩也在80~90分之间的支持度为66.8%,置信度为89.2%,说明学好《数据结构》课程对学好《高级语言课程》起到关键作用,以后安排课程时可以将《数据结构》安
8、排在前,教师授课中要督促学生学好这门课程,打好基础。规则3说明《外语》成绩在70~80分之间,《高级语言程序设计》成绩在80~90分之间的支持度为61.6%,置信度为79.8%,规则4说明《计算机基础》成绩在70~80分之间,《高级语言程序设计》在80~90分之间的支持度为72.6%,置信度为85.7%;这两个规则表示公共基础课程