最新3.2.函数模型及其应用教学讲义ppt课件.ppt

最新3.2.函数模型及其应用教学讲义ppt课件.ppt

ID:62059974

大小:3.73 MB

页数:76页

时间:2021-04-13

最新3.2.函数模型及其应用教学讲义ppt课件.ppt_第1页
最新3.2.函数模型及其应用教学讲义ppt课件.ppt_第2页
最新3.2.函数模型及其应用教学讲义ppt课件.ppt_第3页
最新3.2.函数模型及其应用教学讲义ppt课件.ppt_第4页
最新3.2.函数模型及其应用教学讲义ppt课件.ppt_第5页
资源描述:

《最新3.2.函数模型及其应用教学讲义ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.2.函数模型及其应用3.2.1几类不同增长的函数模型在理想环境中,种群数量呈指数增长;在有限制的环境中,种群数量的增长将由指数增长转变为对数增长,并逐渐趋于稳定.那么,应如何选择不同的函数模型描述这些现象呢?问题情景上述的三个数学模型,第一个是常数函数,另两个都是递增的函数模型,你如何对三个方案作出选择?方法1:我们来计算三种方案所得回报的增长情况:探究二请同学们对函数增长情况进行分析,方法是列表观察或作出图象观察.x/天方案一方案二方案三y/元增加量/元y/元增加量/元y/元增加量/元1400100.40.4240020100.80.8340030101.61.6440

2、040103.23.2540050106.46.46400601012.812.87400701025.625.68400801051.251.294009010102.4102.41040010010204.8…………………3040030010214748364.8107374182.4根据表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?三种方案每天回报表x42681012y20406080100120140o底数为2的指数函数模型比线性函数模型增长速度要快得多.从中你对“指数爆炸”的函数有什么新的理解?你能通过图象描述一下三种方案的特点吗?方法2

3、:我们来作出三种方案的三个函数的图象:1234567891011方案一4080120160200240280320360400440方案二103060100150210280360450550660方案三0.41.22.8612.425.250.8102204.4409.2818.8结论:①投资1~6天,应选择方案一;②投资7天,应选择方案一或二;③投资8~10天,应选择方案二;④投资11天(含11天)以上,则应选择方案三.回报天数方案☞累计回报表:方案一方案二方案三实际应用问题分析、联想抽象、转化构建数学模型解答数学问题审题数学化寻找解题思路还原(设)(列)(解)(答)★解

4、答例1的过程实际上就是建立函数模型的过程,建立函数模型的程序大概如下:1、四个变量随变量变化的数据如下表:练习:1.0051.01511.04611.14071.42952.310751551301058055305337331758.294.478545053130200511305051305302520151050关于x呈指数型函数变化的变量是。【例2】某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过

5、利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?本问题涉及了哪几类函数模型?本问题的实质是什么?·············一次函数模型实质:分析三种函数的不同增长情况对于奖励模型的影响,就是比较三个函数的增长情况.y=0.25xy=log7x+1,·············对数函数模型·············指数函数模型y=1.002x探究一①销售利润达到10万元时,按销售利润进行奖励,且部门销售利润一般不会超过公司总的利润1000万元,所以销售利润x可用不等式表示为____________.③依据这个模型

6、进行奖励时,奖金不超过利润的25%,所以奖金y可用不等式表示为___________.②依据这个模型进行奖励时,奖金总数不超过5万元,所以奖金y可用不等式表示为_________.10≤x≤10000≤y≤50≤y≤25%x你能用数学语言描述符合公司奖励方案的条件吗?探究二你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?奖励模型符合公司要求就是依据这个模型进行奖励时,符合条件:(1)奖金总数不超过5万元;(2)奖金不超过利润的25%.因此,在区间[10,1000]上,不妨作出三个函数模型的图象,通过观察函数的图象,得到初步的结论,再通过具体计算确认结果.探究三40

7、06008001000120020012345678xyoy=5y=0.25x探究四通过观察图象,你认为哪个模型符合公司的奖励方案?探究四通过观察图象,你认为哪个模型符合公司的奖励方案?①对于模型y=0.25x,它在区间[10,1000]上递增,当x>20时,y>5,因此该模型不符合要求;探究四通过观察图象,你认为哪个模型符合公司的奖励方案?②对于模型y=1.002x,它在区间[10,1000]上递增,观察图象并结合计算可知,当x>806时,y>5,因此该模型不符合要求.探究四通过观察图象,你认为哪个模

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。