欢迎来到天天文库
浏览记录
ID:61953339
大小:392.50 KB
页数:10页
时间:2021-04-01
《十六、电磁感应双杆模型四.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、电磁感应双杆模型1、(2006年高考重庆卷第21题)两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面。质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R。整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速度V2向下匀速运动。重力加速度为g。以下说法正确的是( ) A.ab杆所受拉力F的大小为
2、μmg+ B.cd杆所受摩擦力为零 C.回路中的电流强度为 D.μ与V1大小的关系为μ= 2.(20分)如图所示,在磁感应强度为B的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。导轨上端跨接一阻值为R的电阻(导轨电阻不计)。两金属棒a和b的电阻均为R,质量分别为和,它们与导轨相连,并可沿导轨无摩擦滑动。闭合开关S,先固定b,用一恒力F向上拉,稳定后a以的速度匀速运动,此时再释放b,b恰好保持静止,设导轨足够长,取。(1)求拉力F的大小;(2)若将金属棒a固定,让金属棒b自由滑下(开关仍闭合
3、),求b滑行的最大速度;(3)若断开开关,将金属棒a和b都固定,使磁感应强度从B随时间均匀增加,经0.1s后磁感应强度增到2B时,a棒受到的安培力正好等于a棒的重力,求两金属棒间的距离h。3.(18分)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感强度B的匀强磁场中,磁场方向垂直导轨所在平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1、m2,它们都垂直于导轨并
4、与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用与金属杆x1y1上竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。 4(2004年高考广东卷第15题)如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为和,两杆与导轨接触良好,与导轨间的动摩擦因数为,已知:杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也
5、以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。5、够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l,导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图2所示,两根导体棒的质量皆为m,电阻皆为R,回路中其余电阻不计,整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B,设两导体棒均可沿导轨无摩擦的滑行,开始时棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动中始终不接触,求:1、运动中产生焦耳热最多是多少?2、当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?6、(20
6、06年高考广东卷第20题)如图所示,在磁感应强度大小为B,方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U”型光滑金属导轨,在导轨面上各放一根完全相同的质量为的匀质金属杆和,开始时两根金属杆位于同一竖起面内且杆与轨道垂直。设两导轨面相距为H,导轨宽为L,导轨足够长且电阻不计,金属杆单位长度的电阻为r。现有一质量为的不带电小球以水平向右的速度撞击杆的中点,撞击后小球反弹落到下层面上的C点。C点与杆初始位置相距为S。求: (1)回路内感应电流的最大值; (2)整个运动过程中感应电流最多产生了多少热量; (3
7、)当杆与杆的速度比为时,受到的安培力大小。 答案:1、【解析】因4个选项提出的问题皆不同,要逐一选项判断。 因为ab杆做匀速运动,所以受力平衡,有,其中,,,,所以,所以F=μmg+,A正确; 因为cd杆在竖直方向做匀速运动,受力平衡,所以cd杆受摩擦力大小为,或者,因为cd杆所受安培力作为对轨道的压力,所以cd杆受摩擦力大小为,总之,B错误; 因为只有ab杆产生动生电动势(cd杆运动不切割磁感线),所以回路中的电流强度为,C错误; 根据B中和,得μ=,所以D正确。 本题答案为AD。2、解析:(1)(
8、6分)a棒匀速运动,(2分)b棒静止(1分)(1分)(2分)(2)(8分)当a匀速运动时(1分)(1分)解得①(2分)当b匀速运动时:(1分)②(2分)①②式联立得(1分)(3)(6分)(1分)(1分)2BIL=(1分)由①式得(1分)得(2分)3、【解析】(1)设x1y1与
此文档下载收益归作者所有