欢迎来到天天文库
浏览记录
ID:61770380
大小:29.50 KB
页数:5页
时间:2021-03-19
《数据挖掘技术在电子商务中的运用.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数据挖掘技术在电子商务中的运用1数据挖掘技术的来源1.1数据挖掘的产生的缘由人们通常会在平时的生活中遇到大大小小类似的状况,比如商场会将具有关联性的商品放在一起、保险公司会设计出精致的理赔条款等,这些数据信息的挖掘是传统数据分析工具难以完成的。随着科技的发展,信息量不断扩大,人们希望通过对数据的挖掘获得有价值的信息。由此数字挖掘技术便应运而生,并成为一种综合性的数据分析技术。1.2数据挖掘技术的功能分类1.2.1分类方面在对事物的具体描述工程中对描述对象的具体属性以及主要特性等进行不同方式的组类,比如在划分网络上的文章
2、的过程中,主要是根据其中内容的关键词语为根本依据进行划分、整理。1.2.2聚类方面针对被分析事物中所隐藏的深层内容进行有效的识别、认知,同时根据这些深层内容把被分析事物划分为不同的类别。比如在商场对商品进行聚类的同时,要针对“用户喜欢什么样的促销模式”这种问题进行全面的考量,并且将购物习惯性思维较为相近的用户划分在一起,依照不同的习惯性思维将商品有效的划分为不同的类别,并且要针对不同类型的用户所喜欢的促销模式进行具体的深入调查和研究工作。1.2.3关联规则方面在某一对象在出现某种状况的同时会相应的引发其他对象发生相似状
3、况的密切联系属于关联规则。比如在商场购买面包的用户同时购买牛奶的几率性就格外大,并且每一天购买面包的用户里面又有几个是同时购买牛奶的,其中所占的比例到底是多少,这些问题都是可以根据关联规则的支持程度以及可信程度来进行实际、具体的描绘的。但是序列规则却是纵向思维下的联系模式,和关联规则的联系模式大大不同。5学海无涯1.2.4预测方面要想提高预测的高效性能就必须要对预测模型进行有效的构建。预测的主要任务在于对分析对象的发展规则进行高效的分析处理,并且能够将其发展趋势进行预测性的研究分析,比如针对电子商务未来的发展趋势而做出
4、的相关分析工作和预测工作。1.2.5偏差的检测工作方面在描述分析极少数的对象和个别案例的同时,对其深层面的原因以及规则进行具体的研究分析工作。例如银行在开展近一百万笔的金钱交易业务中,总会个别的存在着近五百笔的金钱欺诈案例,所以银行就需要针对业务经营的稳定性发展而采取相关的对策,针对这五百笔的金钱欺诈案例所包含的内在要素进行具体的分析发现,使得银行在经营过程中的风险性降到最低。在这一过程中需要被关注的则是:在数据挖掘技术中的各种功能并不是单一性的存在的,其中存在着必然性的联系,因此在开展数据挖掘的分析过程时,一定要对其
5、中的内在联系进行分析,进而将数据挖掘技术的高效功能进行最大程度的发挥。2数据挖掘技术的主要工具以及运行方式2.1数据挖掘技术运行的主要方式第一,数据挖掘在运行过程中需要对大量的信息数据进行处理分析,同时这也是数据挖掘技术得以产生的主要原因;第二,数据的不完全性是必然存在的,其主要的特征就在于其随机方面以及噪音方面,同时其信息数据的组织结构也是繁琐复杂,维数过于大;第三,数据挖掘技术是各种不同领域的科学性知识的整合,其中针对数学以及计算机、统计学等各方面进行了全面系统的应用,是各个领域的交叉内容。其中普及程度最为广泛的算
6、法以及模型主要划分为以下几方面:2.1.2传统的统计方式在常用的统计方式中应用程度较为普及的主要是抽样技术,在分析处理大量的信息数据的过程中,并没有可能以及必要性来对全部的信息数据进行具体的分析,因此要充分的结合理论性的指导内容来将抽样技术逐渐的科学合理化。之后再对多元统计分析方式以及因子分析方式、回归分析方式、聚类分析方式和时间序列的分析方式等进行逐一的整合,并加以应用。2.1.3可视化技术的应用5学海无涯在直观表现信息数据主要特性的过程中充分的结合图标的形式,尤其是直方图的直观表达,在这一过程中所需要应用的描述统计
7、方式也是极其丰富多元化,其中可视化技术的高效应用现阶段中的关键问题在于如何将高维数据实现最大程度的可视化。2.1.4决策树决策树主要是对大量的数据库根据相关规则进行有效的归纳,将树状图进行构建,一般情况下都会在分类工作和预测工作中得到高效的应用。其中CART、CHAID、ID3、C4.5、C5.O等计算方法都是在这一工作过程中应用频率最高的。2.1.5神经网络方面神经网络技术可以针对人们的神经元功能进行高效率的模拟实现,同时针对输入层以及隐藏层、输出层等方面经过,使得能够直观的调整、计算相关的信息数据,使得其计算结果精
8、确度能够得到全面性的提高,常常用在分类方面以及回归方面。2.1.6遗传算法方面遗传算法主要是根据自然进化的相关理论知识为重要基础,进一步的优化对基因的联合以及突变、选择等进行高效的模拟。2.1.7关联规则的挖掘计算方法关联规则通常情况下是根据数据之间联系的规则性内容进行具体的分析,其中对大型数据的项集进行计算和充分的利用大数据项集
此文档下载收益归作者所有