柔性机械臂逆动力学探究论文.doc

柔性机械臂逆动力学探究论文.doc

ID:61769446

大小:30.00 KB

页数:5页

时间:2021-03-19

柔性机械臂逆动力学探究论文.doc_第1页
柔性机械臂逆动力学探究论文.doc_第2页
柔性机械臂逆动力学探究论文.doc_第3页
柔性机械臂逆动力学探究论文.doc_第4页
柔性机械臂逆动力学探究论文.doc_第5页
资源描述:

《柔性机械臂逆动力学探究论文.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、柔性机械臂逆动力学探究论文1动力学和逆动力学模型一般情况下,柔性机械臂的两根连杆横向弹性变形(弯曲)较小,则忽略机械臂的径向变形;假定关节及臂端负载均为集中质量,则忽略其大小。同时,暂不考虑电机转子的转动惯量和电机的阻尼。图1是一双连杆柔性机械臂,两臂间关节电机质量为,上臂端部集中质量为,两连杆质量和抗弯刚度分别为和,和,两连杆的长度分别为和,和为两关节电机提供的力矩。连杆变形很小,对每根连杆建立一个运动坐标系,使得连杆在其中的相对运动很小。机械臂的整体运动则可由这两个动坐标系的方位角来描述。于是,在动力学模型中将有两类变量,一类是幅值很小但

2、变化迅速的弹性坐标,另一类是变化范围较大的方位角。本文采用端点连线坐标系,即将连杆两端点的连线作为动坐标系的x轴(见图1)。描述整体运动的是两个角度和,而连杆相对于动坐标系的运动则可视为简支梁的振动。这样,动力学模型刚度阵的弹性坐标互相不耦合,臂端的位置可由和确定,其期望运动形式(或数值解):(1)如采用其他形式的动坐标系,两杆的弹性坐标将耦合在一起,而且在逆动力学求解时,将不得不处理微分方程与代数方程组合的方程组。对每个机械臂取两阶模态坐标来描述,应用拉格朗日方法得到动力学方程:(2)式中。为6×6质量阵;为速度的二次项;为6×6刚度阵;为

3、重力的广义力向量;为驱动力矩的广义力向量;,其中和、和分别是两个机械臂的一阶和二阶弹性坐标。柔性臂系统的逆动力学问题,是指在已知期望末端操作器运动轨迹的情况下,结合逆运动学与动力学方程对关节力矩进行求解。如果直接进行逆动力学求解,即把式(1)代入动力学方程式(2)中,对方程中的弹性坐标和力矩进行求解,一般情况下,其数值解将很快发散。5学海无涯表达系统运动状态的坐标可以看成有两部分组成:大范围的相对缓慢的运动(慢变)部分和小范围的振动(快变)部分。本文试图将这两部分分离,分别讨论它们的逆动力学特性,并以此来分析整体系统的逆动力学问题。2快变部分

4、的逆动力学问题首先,寻求两个关节力矩使端点保持不动,先不考虑大范围的运动。此时,重力只起了一个改变平衡点的作用,在方程中把与它相关的部分略去,在动力学方程(2)中令,得:(3)式中在方程(3)中消去和得:(4)式中:,,,,,,,,,,,,对式(4)降阶:(5)式中其中,I是四阶单位阵。方程(5)可化为下列形式:(6)式中。求出的特征值分别为式中。因的特征值存在正实部,则方程(3)所表示的系统不稳定,其解发散,即双连杆柔性臂在这种情况下,其振动问题的精确逆动力学解是发散的。5学海无涯的各特征值在复空间分布关于虚轴对称,必然会出现正实部,如选取

5、更多阶模态函数离散时,会出现同样的情况。因此,选取更多阶模态函数离散时,其振动问题的逆动力学解是发散的。如应用应用文献[10]中给出的迭代法进行逆动力学求解,当积分步长很小时,其解是发散的;当积分步长较大时,便可得到较好的结果。其原因是因为快变部分的逆动力学解发散,当步长较大时相当滤掉了快变部分,便可得到较好的结果。3慢变意义上的逆动力学在进行慢变意义上的逆动力学求解时,应试图将弹性坐标中的振动部分滤掉,弹性坐标中不应含有振动部分,再结合期望的、求得力矩。如图1所示,机械臂的各参数:L1=0.87m,L2=0.77m,M1=1.9kg,M2=

6、0.8kg,m1=12.75kg,m2=2.4kg,=602.5,=218。期望运动轨迹:机械臂端点绕以(0.8,0)为圆心,做半径为0.5m,以每周1s作匀速圆周运动。由机械臂的动力学仿真结果可以看到,弹性坐标的一阶、二阶时间导数项振动幅值很大,但它们都在零值附近振动,即其慢变部分很小。因此,在式(2)中去掉弹性坐标的一阶、二阶时间导数项,相当于滤掉了弹性坐标中的振动部分,经过整理得到如下形式:(7)式中,、、中含、及其一阶时间导数项。将式(1)代入式(7)中,再对方程求解,可以得到弹性坐标和力矩,弹性坐标见图2(图中不含振动的曲线)。为了

7、考察得到的力矩,将力矩代入动力学方程式(2)中,得到的各弹性坐标见图2(图中含振动的曲线),轨迹跟踪曲线、端点坐标与期望运动相比较的误差曲线分别见图3和图4。Fig.4theerrorsofcoordinatesinxandyDirectionsfortheendmovement由图2中可以看出,由式(7)得到的弹性坐标(不含振动)与机械臂的动力学仿真得到的弹性坐标(含振动)的慢变部分十分相似,所以在式(2)中去掉弹性坐标的一阶、二阶时间导数项相当于滤掉了弹性坐标中的振动部分,说明这种方法是合理的。由图3与图4给出的仿真结果可以看出,轨迹跟踪

8、很好,由此可见,得到的力矩精度很高.5学海无涯4结束语由图2可以看到,机械臂在运动过程中,其弹性坐标由两方面组成,一方面是振动部分(快变部分),另一方面是与载荷、惯

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。