福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc

福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc

ID:61739721

大小:1.18 MB

页数:11页

时间:2021-03-14

福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc_第1页
福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc_第2页
福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc_第3页
福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc_第4页
福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc_第5页
资源描述:

《福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理202012240240.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、福建省福建师范大学第二附属中学2020届高三数学上学期期中试题理第I卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)1.已知集合,集合,求()A.B.C.D.2.设,,,则()A.B.C.D.3.平面向量与的夹角为.,,则等于()A.B.C.4D.124.在△中,为边上的中线,为的中点,则()A.B.C.D.5.函数的图象大致为()A.B.C.D.6.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是()A.最长棱的棱长为B.最长棱的棱长为C.侧面四个三角形

2、中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形117.函数的图象如图,则下列有关性质的描述正确的是()A.B.为函数的对称轴C.向左移后的函数为偶函数D.函数的单调递减区间为8.若函数是幂函数,且其图像过点,则函数的单调递增区间为()9.已知定义在上的函数满足对任意都有成立,且函数的图像关于直线对称,则()10.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角A,B,所对的边分别为,,,则的面积.根据此公式,若,且,则的面积为()A.B.C.D.11.已知,,且都是锐角,则()A.B.C.D.1

3、2.已知偶函数满足,且当时,,关于的不等式在区间上有且只有个整数解,则实数的取值范围是()A.B.C.D.第II卷(非选择题)11二、填空题(本题共4道小题,每小题5分,共20分)13.已知复数满足,则等于______.14.已知函数,且,则曲线在处的切线方程为______.15.已知正三棱锥的底面边长为3,外接球的表面积为,则正三棱锥的体积为________.16.已知函数,,则函数的最小值为_____.三、解答题(本题共6道小题,共70分。解答时应写出必要的文字说明、证明过程或演算步骤。)17.(本小题满分10分)已知函数.(Ⅰ)求的最小

4、正周期:(Ⅱ)求在区间上最大值和最小值.18.(本小题满分12分)在平面四边形ABCD中,AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面积为2.(1)求AD的长;(2)求△CBD的面积.19.(本小题满分12分)已知在多面体中,,,,,且平面平面.(I)设点为线段的中点,试证明平面;第19题图(II)若直线与平面所成的角为,求二面角的余弦值.1120.(本小题满分12分)已知函数.(1)若,求实数的值;(2)设函数,若在上没有零点,求的取值范围.21.(本小题满分12分)如图,矩形ABCD是某小区户外活动空地的平面示意图,其

5、中AB=50米,AD=100米,现拟在直角三角形OMN内栽植草坪供儿童踢球娱乐(其中,点O为AD的中点,OM⊥ON,点M在AB上,点N在CD上),将破旧的道路AM重新铺设.已知草坪成本为每平方米20元,新道路AM成本为每米500元,设∠OMA=θ,记草坪栽植与新道路铺设所需的总费用为f(θ).(1)求f(θ)关于θ函数关系式,并写出定义域;(2)为节约投入成本,当tanθ为何值时,总费用f(θ)最小?22.(本小题满分12分)已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.答案:1.B2.D3.B4.A5.A6.D7.C118.A

6、9.D10.A11.A12.D【解析】分析:由偶函数满足,可得函数周期为,利用导数研究函数的单调性,画出函数图象,在上有个周期,且有个整数解,每个周期内有个解,由可得结果.详解:由,可知函数的对称轴为,由于函数是偶函数,,所以函数是周期为的周期函数,当时,,函数在上递增,在上递减,最大值,且,由选项可知,解得或,根据单调性和周期性画出图象如图所示,由图可知,没有整数解,根据函数偶函数,在上有个周期,且有个整数解,11也即每个周期内有个解,,故,解得,故选D.13.14.15.或16.17.(Ⅰ)因为,故最小正周期为(Ⅱ)因为,所以.于是,当,

7、即时,取得最大值;当,即时,取得最小值.18.(1)由已知=AB·BD·sin∠ABD=×2××sin∠ABD=2,11可得sin∠ABD=,又∠ABD∈,所以cos∠ABD=,在△ABD中,由余弦定理AD2=AB2+BD2-2·AB·BD·cos∠ABD,可得AD2=5,所以AD=.(2)由AB⊥BC,得∠ABD+∠CBD=,所以sin∠CBD=cos∠ABD=,又∠BCD=2∠ABD,所以sin∠BCD=2sin∠ABD·cos∠ABD=,∠BDC=π-∠CBD-∠BCD=π--2∠ABD=-∠ABD=∠CBD,所以△CBD为等腰三角形,

8、即CB=CD,在△CBD中,由正弦定理,得CD,所以.19.1120.(1)因为,即:,所以(2)由题意可知,,函数在上没有零点等价于方程在上无实数解,设,则,∴在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。