二次函数2(拱桥问题).ppt

二次函数2(拱桥问题).ppt

ID:61577115

大小:421.00 KB

页数:11页

时间:2021-03-01

二次函数2(拱桥问题).ppt_第1页
二次函数2(拱桥问题).ppt_第2页
二次函数2(拱桥问题).ppt_第3页
二次函数2(拱桥问题).ppt_第4页
二次函数2(拱桥问题).ppt_第5页
资源描述:

《二次函数2(拱桥问题).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实际问题与二次函数2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a>0时,抛物线开口向,有最点,函数有最值,是;当a<0时,抛物线开口向,有最点,函数有最值,是_____。抛物线上小下大高低1.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是.抛物线直线x=h(h,k)基础扫描3.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。当x=时,y的最值是。4.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是。当x=时,函数有最值,是。5.二次函数y=2x2-8x+9的对称轴

2、是,顶点坐标是.当x=时,函数有最值,是。直线x=3(3,5)3小5直线x=-4(-4,-1)-4大-1直线x=2(2,1)2小1基础扫描已知二次函数y=-x2+3x+4的图象如图;(1)方程-x2+3x+4=0的解是____(2)不等式-x2+3x+4>0的解集是____(3)不等式-x2+3x+4<0的解集是____xyo12345-1-2-1-2-3-4-5X=-1,x=4X<-1或x>4-1

3、x2+k(a≠0)因为抛物线过(2,0),(0,2)所以k=2a=-0.54a+k=0k=2解析式为:y=-0.5x2+2一座拱桥的示意图如图,当水面宽4m时,桥洞顶部离水面2m。已知桥洞的拱形是抛物线,(1)求该抛物线的函数解析式。(2)若水面下降1米,水面宽增加多少米?探究活动:M2mAB4m首先要建立适当的平面直角坐标系你认为首先要做的工作是什么?ABMxyo解法一:(1)以水面AB所在的直线为x轴,以AB的垂直平分线为y轴建立平面直角坐标系。设抛物线的解析式为:y=ax2+k(a≠0)抛物线过(2,0),(0,2)点4

4、a+k=0a=-0.5即解析式为:y=-0.5x2+2k=2k=2(2)水面下降1米,即当y=-1时-0.5x2+2=-1解得x1=-√6x2=√6CD=︱x1-x2︳=2√6水面宽增加CD-AB=(2√6-4)米CD1m(-2,0)(2,0)(0,2)平面直角坐标系建立的不同,所得的抛物线的解析式相同吗?最终的解题结果一样哪一种取法求得的函数解析式最简单?解法二:(1)以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系。设二次函数的解析式为y=ax2(a≠0)抛物线经过点(2,-2),可得,a=-0.5抛物线的解析式

5、为:y=-0.5x20xyhA(-2,-2)B(2,-2)CD(2)水面下降1米,即当y=-3时-0.5x2=-3解得x1=-√6x2=√6CD=︱x1-x2︳=2√6水面宽增加CD-AB=(2√6-4)米1m(X1,-3)(X2,-3)试一试如图所示,有一座抛物线型拱桥,在正常水位AB时,水面宽20米,水位上升3米,就达到警戒线CD,这时水面宽为10米。(1)求抛物线型拱桥的解析式。(2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始,在持续多少小时才能达到拱桥顶?(3)若正常水位时,有一艘宽8米,高2.5米的小

6、船能否安全通过这座桥?AB20mCD实际问题抽象转化数学问题运用数学知识问题的解决谈谈你的学习体会解题步骤:1、分析题意,把实际问题转化为数学问题,根据已知条件建立适当的平面直角坐标系。2、选用适当的解析式求解。3、根据二次函数的解析式解决具体的实际问题。课外作业:必做题:练习册第10页第6题;选做题:练习册第10页第8题。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。