资源描述:
《计量经济学实验报告格式.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、时间2013年9月11日 小组成员杨曦陈洁熊姣胡守美杨一兰李益辉实验题目多元线性回归分析一、实验目的与要求:要求目的:熟练运用eviews软件操作,建立适当模型求出线性方程并作出相关分析,用逐步回归法进行修正。二、实验内容根据1982-2011年我国粮食产量、播种面积、有效灌溉面积、农药化肥使用量数据,运用EV软件,做回归分析并用逐步回归法进行修正。三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定为了研究我国粮食产量与播种面积、有效灌溉面积、农药使用量之间是否有关,假定它们之间满足线性约束,则理论模型设定为:=β
2、0+β1X1+β2X2+β3X3+u其中y表示粮食产量,X1表示播种面积,X2表示有效灌溉面积,X3表示农药化肥使用量,U代表随机干扰项1982-2011年我国粮食产量、播种面积、有效灌溉面积、农药化肥使用量数据,如下表:年份粮食(万吨)播种面积(千公顷)有效灌溉面积(千公顷)农药化肥使用量(万吨)198235,450.00113,462.4044,176.871,513.40198338,727.50114,047.2044,644.071,659.80198440,730.50112,883.9344,453.001,739.80198
3、537,910.80108,845.1344,035.931,775.80198639,151.20110,932.6044,225.801,930.60198740,297.70111,267.7744,403.001,999.30198839,408.10110,122.6044,375.912,141.50198940,754.90112,204.6744,917.202,357.10199044,624.30113,465.8747,403.072,590.30199143,529.30112,313.6047,822.072,80
4、5.10199244,265.80110,559.7048,590.102,930.20199345,648.80110,508.7048,727.903,151.80199444,510.10109,543.7048,759.103,317.90199546,661.80110,060.4049,281.603,593.70199650,453.50112,547.9250,381.603,827.90199749,417.10112,912.1051,238.503,980.70199851,229.53113,787.4052,295
5、.604,083.69199950,838.58113,160.9853,158.414,124.32200046,217.52108,462.5453,820.334,146.41200145,263.67106,080.0354,249.394,253.76200245,705.75103,890.8354,354.854,339.39200343,069.5399,410.3754,014.234,411.56200446,946.95101,606.0354,478.424,636.58200548,402.19104,278.38
6、55,029.344,766.22200649,804.23104,957.7055,750.504,927.69200750,160.28105,638.3656,518.345,107.83200852,870.92106,792.6558,471.685,239.02200953,082.08108,985.7559,261.455,404.35201054,647.71109,876.0960,347.705,561.68201157,120.85110,573.0261,681.565,704.24(一)参数估计1、双击“Evie
7、ws”,进入主页,输入数据。2、在“workfile”点击“view”“graph”“scatter”得到如下散点图在EV主页界面的窗口,点击“object”“newobject”“ok”输入“ycx1x2x3”,按“Enter”。出现OLS回归结果,如下图VariableCoefficientStd.Errort-StatisticProb. X10.0.10.393320.0000X2-0.0.-1.0.1171X36.0.7.0.0000C-28807.729329.688-3.0.0048R-squared0. Meande
8、pendentvar45896.71AdjustedR-squared0. S.D.dependentvar5404.497S.E.ofregression1047.294