欢迎来到天天文库
浏览记录
ID:61506518
大小:1.57 MB
页数:18页
时间:2021-02-08
《2014高考数学“拿分题”训练(知识整合+方法技巧+例题分析):函数问题.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2014高考数学“拿分题”训练:数问题的题型与方法三、函数的概念函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.3.通过对分段定义函数,复合函数,抽象函数等的认识,
2、进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.Ⅰ深化对函数概念的认识例1.下列函数中,不存在反函数的是 ()分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的
3、,因为过程太繁琐.从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数
4、概念复习中的重要课题.例1.(重庆市)函数的定义域是(D)A、B、C、D、例2.(天津市)函数()的反函数是(D)A、B、C、D、也有个别小题的难度较大,如例3.(北京市)函数其中P、M为实数集R的两个非空子集,又规定,,给出下列四个判断:①若,则②若,则③若,则④若,则其中正确判断有(B)A、1个B、2个C、3个D、4个分析:若,则只有这一种可能.②和④是正确的.Ⅱ系统小结确定函数三要素的基本类型与常用方法1.求函数定义域的基本类型和常用方法由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围.它依赖于
5、对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字例2.已知函数定义域为(0,2),求下列函数的定义域:分析:x的函数f(x)是由u=x与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x<2.求x的取值范围.解:(1)由0<x<2,得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.求
6、函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域。2.求函数值域的基本类型和常用方法函数的值域是由其对应法则和定义域共同决定的.其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域.3.求函数解析式举例[来源:学科网]例3.已知xy<0,并且4x-9y=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.分析:4x-9y=36在解析几何中表示双曲线的方程,仅此当然不能确定
7、一个函数关系y=f(x),但加上条件xy<0呢?所以因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).说明:本例从某种程度上揭示了函数与解析几何中方程的内在联系.任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.(2)从生产
8、、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.四、函数的性质、图象(一)函数的性质函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解
此文档下载收益归作者所有