spss对主成分回归实验报告

spss对主成分回归实验报告

ID:6150436

大小:1.02 MB

页数:13页

时间:2018-01-04

spss对主成分回归实验报告_第1页
spss对主成分回归实验报告_第2页
spss对主成分回归实验报告_第3页
spss对主成分回归实验报告_第4页
spss对主成分回归实验报告_第5页
资源描述:

《spss对主成分回归实验报告》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《多元统计分析分析》实验报告2012年月日学院经贸学院姓名学号实验名称实验成绩一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及

2、类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):第13页图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。选完后点

3、击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。最后点击“确定”,运行线性回归,输出相关结果(见表1-3)第13页图5图6图7第13页图8图9回归分析输出结果:第13页表1模型汇总b模型RR方调整R方标准估计的误差Durbin-Watson1.996a.992.988.

4、488872.740a.预测变量:(常量),x3,x2,x1。b.因变量:y表2Anovab模型平方和df均方FSig.1回归204.776368.259285.610.000a残差1.6737.239总计206.44910a.预测变量:(常量),x3,x2,x1。b.因变量:y表3系数a模型非标准化系数标准系数tSig.相关性共线性统计量B标准误差试用版零阶偏部分容差VIF1(常量)-10.1281.212-8.355.000x1-.051.070-.339-.731.488.965-.266-.02

5、5.005185.997x2.587.095.2136.203.000.251.920.211.9811.019x3.287.1021.3032.807.026.972.728.095.005186.110a.因变量:y由表可知,回归模型拟合优度达到99.2%,方差分析也显示线性回归方程整体显著(F=285.61,Sig.=0.000)但是回归系数估计结果中,x1的系数为-0.051与一般经济理论矛盾且不显著(t检验值-0.731,检验的p值0.488),经多重共线性诊断(x1与x3的VIF值高达180

6、以上)表明自变量存在共线性。运用主成分分析做多重共线性处理:(2)自变量x1-x3的主成分分析:由于spss没有独立的主成分分析模块,需要在因子分析里完成,因此需要特别注意:在数据窗口下选择“分析”—“降维”—“因子分析”(见图10);在弹出的窗口中将x1-x3调入“变量”(见图11);然后①点击“描述”,选择要输出的统计量(见图12):选中“统计量”下的两个项目(输出变量描述统计和初始分析结果);在“相关矩阵”一般要选择输出“系数”、“显著性水平”、“KMO”(做主成分分析和因子分析的适用性检验,也就

7、是检验变量之间的相关系数是否足够大可以做因子分析)选完后点击“继续”进行下一步;②点击“抽取”(见图13):在“方法”下默认“主成分”;“分析”下,默认“相关性矩阵”第13页(含义是要对变量做标准化处理,然后基于标准化后的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个

8、单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。选完后点击“继续”进行下一步;③点击“旋转”(图14),按默认的“方法”下不旋转(注意,主成分分析不能旋转!)其他不用选,点击“继续”进行下一步;④点击“得分”,计算不旋转的初始因子得分(图15),选中“保存为变量”,“方法”

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。