高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc

高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc

ID:61447463

大小:581.00 KB

页数:13页

时间:2021-01-31

高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc_第1页
高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc_第2页
高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc_第3页
高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc_第4页
高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc_第5页
资源描述:

《高考数学备考冲刺之易错点点睛系列专题 选考系列(教师版).doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、选考系列一、高考预测几何证明选讲是高考的选考内容,主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对本部分的考查主要是一道选考解答题,预测2012年仍会如此,难度不会太大.矩阵与变换主要考查二阶矩阵的基本运算,主要是以解答题的形式出现.预测在2012年高考主要考查(1)矩阵的逆矩阵;(2)利用系数矩阵的逆矩阵求点的坐标或曲线方程.坐标系与参数方程重点考查直线与圆的极坐标方程,极坐标与直角坐标的互化;直线,圆与椭圆的参数方程,参数方程与普通方程的互化,题目

2、不难,考查“转化”为目的.预测2012高考中,极坐标、参数方程与直角坐标系间的互化仍是考查的热点,题目容易.不等式选讲是高考的选考内容之一,主要考查绝对值的几何意义,绝对值不等式的解法以及不等式证明的基本方法(比较法、分析法、综合法).关于含有绝对值的不等式的问题.预测2012年高考在本部分可能会考查不等式的证明或求最值问题.参数方程与极坐标1.极点的极径为0,极角为任意角,即极点的坐标不是惟一的.极径ρ的值也允许取负值,极角θ允许取任意角,当ρ<0时,点M(ρ,θ)位于极角θ的终边的反向延长线上,且OM=

3、ρ

4、,在这样的规定下,平面上的点的坐标不是惟一的,即给定极坐标后,可以

5、确定平面上惟一的点,但给出平面上的点,其极坐标却不是惟一的.这有两种情况:①如果所给的点是极点,其极径确定,但极角可以是任意角;②如果所给点M的一个极坐标为(ρ,θ)(ρ≠0),则(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)(k∈Z)也都是点M的极坐标.这两种情况都使点的极坐标不惟一,因此在解题的过程中要引起注意.2.在进行极坐标与直角坐标的转化时,要求极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,且长度单位相同,在这个前提下才能用转化公式.同时,在曲线的极坐标方程和直角坐标方程互化时,如遇约分,两边平方,两边同乘以ρ,去分母等变形,应特别注意变形的等价性.

6、3.对于极坐标方程,需要明确:①曲线上点的极坐标不一定满足方程.如点P(1,1)在方程ρ=θ表示的曲线上,但点P的其他形式的坐标都不满足方程;②曲线的极坐标方程不惟一,如ρ=1和ρ=-1都表示以极点为圆心,半径为1的圆.2.对于不等式的各项取倒数问题,一定要分清各项的符号,对于同号的,可运用深化(2);若不同号,可根据符号进行判定.3.解含绝对值的不等式的指导思想是去掉绝对值.常用的方法是:①由定义分段讨论;②利用绝对值不等式的性质;③平方.4.解含参数的不等式,如果转化不等式的形式或求不等式的解集时与参数的取值范围有关,就必须分类讨论.注意:①要考虑参数的取值范围;②用同一标

7、准对参数进行划分,做到不重不漏.5.利用绝对值的定义和几何意义来分析,绝对值的特点是解决带有绝对值符号问题的关键,如何去掉绝对值符号,一定要认真总结规律与方法.6.绝对值不等式的证明通常与放缩法联系在一起,放缩常用如下绝对值不等式:①

8、a+b

9、≤

10、a

11、+

12、b

13、;②

14、a-b

15、≤

16、a-c

17、+

18、c-b

19、.7.注意柯西不等式等号成立的条件⇔a1b2-a2b1=0,这时我们称(a1,a2),(b1,b2)成比例,如果b1≠0,b2≠0,那么a1b2-a2b1=0⇔=.若b1·b2=0,我们分情况说明:①b1=b2=0,则原不等式两边都是0,自然成立;②b1=0,b2≠0,原不等式化为(a

20、+a)b≥ab,是自然成立的;③b1≠0,b2=0,原不等式和②的道理一样,自然成立.正是因为b1·b2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b1·b2≠0,等号成立的条件可写成=.三、易错点点睛几何证明选讲几何证明选讲是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们更应注意.重点把握以下内容:1.射影定理的内容及其证明;2.圆周角与弦切角定理的内容及证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定;5.平行投影的性质与圆锥曲线的统一定义.如图,A,B,C,D四点在同一圆上,A

21、D的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.证明 (1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FA

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。