资源描述:
《黄冈中学高考数学9解析几何题库.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、黄冈中学高考数学9解析几何题库黄冈中学高考数学知识点---“黄冈中学高考数学知识点”---结合起来看看效果更好记忆中理解理解中记忆涵盖所有知识点题题皆精心解答一、选择题1.(辽宁理,4)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为A.B.C.D.【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径即可.【答案】B2.(重庆理,1)直线与圆的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【解析】圆心为到直线,即的距离,而,选B。【答案】B3.(重庆文,1)圆心在轴上,半径为1,且过点
2、(1,2)的圆的方程为()A.B.C.D.解法1(直接法):设圆心坐标为,则由题意知,解得,故圆的方程为。解法2(数形结合法):由作图根据点到圆心的距离为1易知圆心为(0,2),故圆的方程为解法3(验证法):将点(1,2)代入四个选择支,排除B,D,又由于圆心在轴上,排除C。【答案】A4.(上海文,17)点P(4,-2)与圆上任一点连续的中点轨迹方程是 ()A. B.C. D.【解析】设圆上任一点为Q(s,t),PQ的中点为A(x,y),则,解得:,代入圆方程,得(2x-4)2+(2y+2)2=4,整理,得:【答案】A5.(上海文,15)已知直线平行,则k得值是
3、()A.1或3B.1或5C.3或5D.1或2【解析】当k=3时,两直线平行,当k≠3时,由两直线平行,斜率相等,得:=k-3,解得:k=5,故选C。【答案】C6.(上海文,18)过圆的圆心,作直线分别交x、y正半轴于点A、B,被圆分成四部分(如图),若这四部分图形面积满足则直线AB有()(A)0条(B)1条(C)2条(D)3条【解析】由已知,得:,第II,IV部分的面积是定值,所以,为定值,即为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条,故选B。【答案】B7.(陕西理,4)过原点且倾斜角为的直线被圆学所截得的弦长为科网A.B.2C.D.2【答案】D
4、二、填空题8.(广东文,13)以点(2,)为圆心且与直线相切的圆的方程是.【解析】将直线化为,圆的半径,所以圆的方程为【答案】9.(天津理,13)设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______【解析】由题直线的普通方程为,故它与与的距离为。【答案】10.(天津文,14)若圆与圆的公共弦长为,则a=________.【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为,利用圆心(0,0)到直线的距离d为,解得a=1.【答案】111.(全国Ⅰ文16)若直线被两平行线所截得的线段的长为,则的倾斜角可以是①②③④⑤其中正确答案的序号是.(写出所有正确
5、答案的序号)【解析】解:两平行线间的距离为,由图知直线与的夹角为,的倾斜角为,所以直线的倾斜角等于或。【答案】①⑤12.(全国Ⅱ理16)已知为圆:的两条相互垂直的弦,垂足为,则四边形的面积的最大值为。【解析】设圆心到的距离分别为,则.四边形的面积【答案】513.(全国Ⅱ文15)已知圆O:和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于【解析】由题意可直接求出切线方程为y-2=(x-1),即x+2y-5=0,从而求出在两坐标轴上的截距分别是5和,所以所求面积为。【答案】14.(湖北文14)过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P
6、、Q,则线段PQ的长为。【解析】可得圆方程是又由圆的切线性质及在三角形中运用正弦定理得.【答案】415.(江西理16).设直线系,对于下列四个命题:.中所有直线均经过一个定点.存在定点不在中的任一条直线上.对于任意整数,存在正边形,其所有边均在中的直线上.中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号).【解析】因为所以点到中每条直线的距离即为圆:的全体切线组成的集合,从而中存在两条平行直线,所以A错误;又因为点不存在任何直线上,所以B正确;对任意,存在正边形使其内切圆为圆,故正确;中边能组成两个大小不同的正三角形和,故D错误,故命题中正确的序号是B,C
7、.【答案】 三、解答题16.(2009江苏卷18)(本小题满分16分)在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。解(1)设直线的方程为:,即由垂径定理,得:圆心到直线的距离,结合点到直线距离公式,得:化简得:求直线的方程为:或,即或(2)设点P坐标为,