高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx

高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx

ID:61345075

大小:58.07 KB

页数:4页

时间:2021-01-26

高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx_第1页
高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx_第2页
高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx_第3页
高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx_第4页
资源描述:

《高中数学备课精选1.1.1《正弦定理》教案新人教B版必修5.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1.1正弦定理(一)教学目标1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。2.过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。(二)教学重、难点

2、重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判断解的个数。(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:abcsinAsinBsinC,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。教学用具:直尺、投影仪、计算器(四)教学设想[创设情景]如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精

3、确地表示出来?CB[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有absinB,又sinC1cAcsinA,cc,则abccbcsinBsinsinAC从而在直角三角形ABC中,abcCaBAsinBsinCsin(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:-1-如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD

4、,根据任意角三角函数的定义,有CD=asinBbsinA,则abCsinAsinB,同理可得cbB,basinCsin从而abcAcBsinAsinBsinC(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(证法二):过点A作jAC,C由向量的加法可得ABACCB则jABj(ACCB)AB∴jABjACjCBjjABcos900A0jCBcos900C∴csinAasinC,即acsinAsinC同理,过点C作jBC,可得bcsinBsinC从而abcsinAsinBsinC类似可推出,当ABC是钝角三角形

5、时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即abcsinAsinBsinC[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;(2)abcabcbacsinAsinBsinC等价于sinAsinB,sinCsinB,sinAsinC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如absinAsinB;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值

6、,如asinAbsinB。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。-2-[例题分析]例1.在ABC中,已知00A32.0,B81.8,a,解三角形。42.9cm解:根据三角形内角和定理,C1800(AB)1800(32.0081.80)66.20;根据正弦定理,basinB42.9sin81.8080.1(cm);sinAsin32.00根据正弦定理,casinC42.9sin66.2074.1(cm).sinAsin32.00评述:对于解三角形中的复杂运算可使用计算器。例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角

7、度精确到10,边长精确到1cm)。解:根据正弦定理,sinBbsinA28sin4000.8999.a20因为00<B<1800,所以B640,或B1160.⑴当B640时,C1800(AB)1800(400640)760,casinC20sin76030(cm).sinAsin400⑵当B1160时,C1800(AB)1800(4001160)240,casinC20sin24013(cm).sinAsin400评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。[随堂练习]第5页练习第1(1)、2(1)题。例3.已知ABC中,A600,a3,求a

8、bcsin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。