欢迎来到天天文库
浏览记录
ID:60854517
大小:177.50 KB
页数:6页
时间:2020-12-23
《数学中考探究题复习进程.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、…………………………………………………………最新精品资料推荐……………………………………………………2015数学中考探究题、变式题29.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点. (1)如图1,当点P与点Q重合时,AE与BF的位置关系是____________AE∥BF,QE与QF的数量关系式___________;QE=QF(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明
2、; (3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.338.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE. (2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明
3、理由. (3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状. 39…………………………………………………………最新精品资料推荐……………………………………………………6…………………………………………………………最新精品资料推荐…………………………………………………….【提出问题】 (1)如图1,在等边△ABC中,点M是
4、BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN. 【类比探究】 (2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由. 【拓展延伸】 (3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.41.(1)观察发
5、现 如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下: 作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值. 如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下: 作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为__________. (2)实践运用 如图(3)
6、:已知⊙O的直径CD为2,AC的度数为60°,点B是AC 的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为__________. (3)拓展延伸 如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法.88.如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD. (1)①猜想图1
7、中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值. …………………
8、………………………………………最新精品资料推荐……………………………………………………6…………………………………………………………最新精品资料推荐……………………………………………………125.阅读下面材料: 小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积. 小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,
此文档下载收益归作者所有