欢迎来到天天文库
浏览记录
ID:60358025
大小:438.05 KB
页数:9页
时间:2020-12-05
《勾股定理辅导讲义 最新 可下载 可修改 优质文档.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、可下载可修改优质文档一对一八年级数学教师辅导讲义学员编号:年级:八年级课时数:一课时学员姓名:辅导科目:数学学科教师:课题勾股定理综合复习及易错题分析授课时间:备课时间:教学目标掌握易错题解题技巧,能在掌握勾股定理的基本知识的基础拔高。教学内容勾股定理及其常考题型勾股定理也称毕达哥拉斯定理,文字表述:直角三角形两直角边的平方和等于斜边的平方.结合直角三角形图形,用字母可表示为:,如下图,a、b为直角边,c为斜边。勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与代数很好的联系起来。因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮
2、助,下面我们具体来看看初中数学有关勾股定理的一些常见题型及其解答方法。一、边的计算1、在Rt△ABC中,∠C=90°,若a=6,b=8,则c=.解:因为,所以c=10。评论:直接由勾股定理所以得2、在Rt△ABC中,∠C=90°,AC=3,BC=4,则斜边上的高CD的长为()A.B.C.D.解:由勾股定理知:AB=5,又因为S△ABC=AC×BC=AB×CD即:×3×4=×5×CD,所以CD=评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。3、若一直角三角形两边的长为12和5,则第三边的长为()A.13B.13或C.13或15D.15解:当12对应的边为斜边时,此时由勾
3、股定理得第三边为当12对应的边是直角边时,则第三边为斜边,由得第三边的长为139可下载可修改优质文档评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性。4.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为( )A、121B、120C、132D、不能确定解:设该Rt△的三边分别为a、b、c,a、b为直角边,c为斜边由勾股定理知:,即:112+b2=c2所以(b+c)(c-b)=121因为b、c都为自然数,所以b+c,c-b,都为正自然数。又因为121只有1、11、121这三个正整数因式,所以b+c=121,c-b=1。所以b=60,c=61评论,本题以直角三角形
4、为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。二、直角三角形的判定5、在△ABC中中,a、b、c为∠A、∠B、∠C的对边,给出如下的命题:①若∠A:∠B:∠C=1:2:3,则△ABC为直角三角形;②若∠A=∠C一∠B,则△ABC为直角三角形;③若,,则△ABC为直角三角形;④若a:b:c=5:3:4,则△ABC为直角三角形;⑤若(a+c)(a-c)=b2,则△ABC为直角三角形;⑥若(a+c)2=2ac+b2,则△ABC为直角三角形;⑦若AB=12,AC=9,BC=15,则△ABC为直角三角形。 上面的命题中正确的有( )A.6
5、B.7C.8D.9解:对①,因为三角形内角和为180度,所以∠A+∠B+∠C=180°,因为∠A:∠B:∠C=1:2:3,所以∠C=180°×所以∠C=90°则△ABC为直角三角形,①正确。对②,因为∠A+∠B+∠C=180°,而∠A=∠C一∠B,所以∠C一∠B+∠B+∠C=180°所以∠C=90°,即△ABC为直角三角形,②正确。对③,设a=5k,因为,,则c=4k,C2+b2=a2所以为△ABC直角三角形.③正确,同理易知④正确,对⑤,因为(a+c)(a-c)=b2所以a2–c2=b2,所以△ABC为直角三角形.⑤正确,对⑥,因为(a+c)2=2ac+b2,所以a2+c2+2
6、ac=2ac+b2所以a2+c2=b2正确,对⑦,因为AB=12,AC=9,AC=15,所以AB2+AC2=BC2所以正确。答案选B评论:直角三角形的评定可以从角和边两方面来进行,从角来判定需结合三角形内角和定理,从边来判定需结合勾股定理。一般是验证最大边的平方是否等于两小边的平方和。9可下载可修改优质文档图18-1三、翻折6、矩形纸片ABCD中,AD=4cm,AB=10cm,按如图18-1方式折叠,使点B与点D重合,折痕为EF,则DE=_______cm.解:设DE为x,因为DE是由BE翻折过来的,所以DE=BE=x,则AE=10-x,在Rt△ABD中:AD2+AE2=DE2所
7、以:42+(10-x)2=x2解得x=5.8cm评论:翻折和旋转是初中数学常见的题型,解答这类题的关键在于把握翻折和旋转前后的联系,主要是看清哪些量没变,抓住这些不变的量,以此为突破口便可以顺利解决。本题的不变量是DE和BE的长度,抓住这个关系,再通过勾股定理建立等式,在直角三角形中便可解出边长的长度。四、爬行7.如图,有一个圆柱,它的高等于16cm,底面半径等于4cm,在圆柱下底面的点有一只蚂蚁,它想吃到上底面上与点相对的点处的食物,需要爬行的最短路程是cm.(取3)解:蚂蚁要
此文档下载收益归作者所有