最新《小数乘法》重难点突破.doc

最新《小数乘法》重难点突破.doc

ID:60218105

大小:23.00 KB

页数:5页

时间:2020-12-04

最新《小数乘法》重难点突破.doc_第1页
最新《小数乘法》重难点突破.doc_第2页
最新《小数乘法》重难点突破.doc_第3页
最新《小数乘法》重难点突破.doc_第4页
最新《小数乘法》重难点突破.doc_第5页
资源描述:

《最新《小数乘法》重难点突破.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、__________________________________________________《小数乘法》重难点突破1.理解小数乘整数的算理,掌握小数乘整数的一般方法突破建议:(1)充分利用主题图展示的数学信息(风筝单价及要解决的问题),为学生理解算理提供感性支撑。教学中可以放手让学生利用已有的知识经验独立解决“买3个蝴蝶风筝多少钱”的问题,学生解答后,从中选出一种较为简单的方法(如35角×3)进行重点分析、说理,引导学生用简洁的语言进行总结和概括:先把3.5元转化为35角,再计算35角×3,最后将

2、结果105角转化为10.5元。从而通过“元、角”这些具体量的进率关系,初步为算理的理解提供感性支撑,为后面例2的教学做好铺垫。(2)引导学生运用“转化”的思想方法,通过旧知迁移,理解和掌握新知。要注意引导学生紧紧抓住例1中的计算经验,特别是“将3.5元转化为35角”的经验来学习例2。放手让学生应用已有的整数乘法经验自主计算“0.72×5”,列出竖式,并尝试对过程做出合理的解释,有效地突破难点。(3)及时引导学生梳理和总结小数乘整数的竖式计算要点。在学生理解上述算理的基础上,重点引导学生归纳用竖式计算的要点

3、:①按整数乘法的规则进行计算;②处理好积中小数点位置的确定,因数中一共有几位小数,积中也应有几位小数;③如果积的小数部分末尾有0,应根据小数的基本性质去掉小数末尾的“0”。2.积的小数数位不够时如何确定小数点的位置突破建议:(1)在教学小数乘小数及相应的练习中,应结合具体的计算实例组织学生观察、比较因数与积的小数位数,引导学生发现因数与积的小数位数之间的关系,为正确确定积的小数点的位置提供操作依据。(2)在教学例4时,可以先放手让学生按照一般方法计算,引出“乘得的积的小数位数不够,怎么点小数点?”的问题,

4、教师再来引导学生去寻找解决问题的办法,让学生自己想到可以根据小数点移动引起小数大小的变化规律来解决问题,理解乘得的积的小数位数不够时,应该先在前面用0补足,再点小数点,让学生经历发现问题——解决问题的学习过程,留下较为深刻的印象。收集于网络,如有侵权请联系管理员删除__________________________________________________(3)设计具有针对性的练习(不一定要完整的计算),让学生明确:①一定要数清楚两个因数中小数的位数,弄清楚应补上几个0;②确定积的小数点位置时,应

5、先点上小数点,然后再把小数末尾的0去掉。3.理解“倍”可以是小数,能解决求一个数的小数倍的实际问题,掌握计算方法突破建议:(1)激活已有经验,帮助学生扩充“倍”的认识。学生在第一学段已经对“倍”有了初步认识,对两个数量之间“倍”的关系并不陌生,知道求一个数的几倍是多少用乘法计算。在本课教学时,教师应帮助学生激活已有的旧知,让学生先解决整数倍的数学问题,并说一说列式的理由,以利于学生在分析、解决“小数倍”的问题时,能从对整数倍的认识扩充到对“小数倍”的认识。(2)借助具体事例,引导学生理解小数倍的含义。在教

6、学例5时,可以借助生动的情境,让学生用自己的方式读题,再用自己的话表述题意。在表述“鸵鸟的最高速度是非洲野狗的1.3倍”时,应尽可能给学生创设表述的空间,让学生充分表述自己的理解,着重是对“1.3倍”含义的理解,从具体事件中领会“倍”不仅可以是整数,也可以是小数,有时用小数倍表示两个数量之间的关系更为直观。4.理解求积的近似数往往是“实际应用”的需要突破建议:(1)在教学“积的近似数”时,可以明确揭示求“积的近似数”的背景与一般方法:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要

7、,按“四舍五入”法保留一定的小数位数,求出积的近似数。(2)在例题教学中,可借助教材创设的情境,从例题给出的信息“人的嗅觉细胞约有0.049亿个”和要解决的问题“狗约有多少亿个嗅觉细胞?”使学生认识到,生活实际中有些小数我们既无可能、又无必要知道它们的准确值,只要知道它们的近似数就可以了,使学生感受到求积的近似数是“实际应用”的需要。(3)选择、设计一些与求积的近似数有关的实际问题,让学生在解决问题的过程中辨析、体会。如:教材第13页第3题求“这台计算机有多重?”为什么要“得数保留整数”?又如:教材第11

8、页“做一做”第2题求“买2.5收集于网络,如有侵权请联系管理员删除__________________________________________________kg应付多少钱?”为什么没有明确提出求近似数的要求,但也要自觉地“得数保留两位小数”?使学生在解决问题的过程中,体会到求积的近似数不是随意的要求,而确实是“实际应用”的需要。5.应用乘法运算定律进行小数的简便计算突破建议:(1)在教学将整数乘法运算定律推广到小数时

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。