jiao jb-高能物理实验中的误差分析

jiao jb-高能物理实验中的误差分析

ID:6004642

大小:478.00 KB

页数:37页

时间:2017-11-16

jiao jb-高能物理实验中的误差分析_第1页
jiao jb-高能物理实验中的误差分析_第2页
jiao jb-高能物理实验中的误差分析_第3页
jiao jb-高能物理实验中的误差分析_第4页
jiao jb-高能物理实验中的误差分析_第5页
资源描述:

《jiao jb-高能物理实验中的误差分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高能物理实验中的误差分析提纲误差及相关概念测量误差的估计和处理高能物理实验中的物理量及其误差一.误差及相关概念概念:给出值与真值之间的差异。测量方法:对已知真值的情况,测量值与真值比较,从而得到修正量。A.绝对误差B.相对误差误差的分类:统计误差:随机误差,绝对值与符号的变化随机系统误差:非随机误差,绝对值及符号恒定,如果条件变化,误差变化有规律粗大误差:异常测量值↖(理论值、定义值…)↑(测量值、实验值…)误差表示的约定误差一般1-2位有效数字一般不四舍五入,而是进位制数字修约规则:后一位大于0.5,进1后一位小于0.5,不变后一位等于0

2、.5,奇进偶退误差来源:装置误差:MDC丝位不准,导致正负电荷径迹不对称环境误差:BSC幅度随温度变化人员误差:BEPC能量由高向低调,倾向于造信号或者消灭信号方法误差:TELESIS引起的误差理论假设:宽共振的BW形式……随机误差定义:在同一测量条件下(指在测量环境、测量人员、测量技术和测量仪器都相同的条件下),多次重复测量同一量值时(等精度测量),每次测量误差的绝对值和符号都以不可预知的方式变化的误差,称为随机误差或偶然误差,简称随差。随机误差主要由对测量值影响微小但却互不相关的大量因素共同造成。这些因素主要是噪声干扰、电磁场微变、零件

3、的摩擦和配合间隙、热起伏、空气扰动、大地微震、测量人员感官的无规律变化等。系统误差定义:在同一测量条件下,多次测量重复同一量时,测量误差的绝对值和符号都保持不变,或在测量条件改变时按一定规律变化的误差,称为系统误差。例如仪器的刻度误差和零位误差,或值随温度变化的误差。产生的主要原因是仪器的制造、安装或使用方法不正确,环境因素(温度、湿度、电源等)影响,测量原理中使用近似计算公式,测量人员不良的读数习惯等。系统误差表明了一个测量结果偏离真值或实际值的程度。系差越小,测量就越准确。系统误差的定量定义是:在重复性条件下,对同一被测量进行无限多次测

4、量所得结果的平均值与被测量的真值之差。即粗大误差:粗大误差是一种显然与实际值不符的误差。产生粗差的原因有:①测量操作疏忽和失误如测错、读错、记错以及实验条件未达到预定的要求而匆忙实验等。②测量方法不当或错误如用普通万用表电压档直接测高内阻电源的开路电压③测量环境条件的突然变化如电源电压突然增高或降低,雷电干扰、机械冲击等引起测量仪器示值的剧烈变化等。含有粗差的测量值称为坏值或异常值,在数据处理时,应剔除掉。误差的表达4.系差和随差的表达式在剔除粗大误差后,只剩下系统误差和随机误差各次测得值的绝对误差等于系统误差和随机误差的代数和。在任何一次

5、测量中,系统误差和随机误差一般都是同时存在的。系差和随差之间在一定条件下是可以相互转化的测量结果的表征精密度表示随机误差的影响。精密度越高,表示随机误差越小。随机因素使测量值呈现分散而不确定,但总是分布在平均值附近。准确度表示系统误差的大小。系统误差越小,则准确度越高,即测量值与实际值符合的程度越高。精确度用来反映系统误差和随机误差的综合影响。精确度越高,表示正确度和精密度都高,意味着系统误差和随机误差都小。射击误差示意图二.测量误差的估计和处理随机误差的统计特性及减少方法在测量中,随机误差是不可避免的。随机误差是由大量微小的没有确定规律的

6、因素引起的,比如外界条件(温度、湿度、气压、电源电压等)的微小波动,电磁场的干扰,大地轻微振动等。多次测量,测量值和随机误差服从概率统计规律。可用数理统计的方法,处理测量数据,从而减少随机误差对测量结果的影响。随机误差的分布规律(1).随机变量的数字特征①数学期望:反映其平均特性。其定义如下:X为离散型随机变量:X为连续型随机变量:②方差和标准偏差方差是用来描述随机变量与其数学期望的分散程度。设随机变量X的数学期望为E(X),则X的方差定义为:D(X)=E(X-E(X))2标准偏差定义为:标准偏差同样描述随机变量与其数学期望的分散程度,并且

7、与随机变量具有相同量纲。(2)测量误差的正态分布测量中的随机误差通常是多种相互独立的因素造成的许多微小误差的总和----抵偿性。中心极限定理:假设被研究的随机变量可以表示为大量独立的随机变量的和,其中每一个随机变量对于总和只起微小作用,则可认为这个随机变量服从正态分布。正态分布的概率密度函数和统计特性随机误差的概率密度函数为:测量数据X的概率密度函数为:随机误差的数学期望和方差为:同样测量数据的数学期望E(X)=,方差D(X)=标准偏差意义标准偏差是代表测量数据和测量误差分布离散程度的特征数。标准偏差越小,则曲线形状越尖锐,说明数据越集中;

8、标准偏差越大,则曲线形状越平坦,说明数据越分散。有限次测量的数学期望和标准偏差的估计值(1)有限次测量的数学期望的估计值——算术平均值用事件发生的频度代替事件发生的概率,当则令n

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。