欢迎来到天天文库
浏览记录
ID:5996340
大小:30.00 KB
页数:8页
时间:2017-12-30
《基于实例本科数据挖掘课程教学探索》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于实例本科数据挖掘课程教学探索 摘要:分析数据挖掘原理与算法课程在教学中存在的弊端,并基于数据挖掘课程的本质,阐述在以培养应用型人才为主的大学中,如何以实例为主线,贯穿教学过程,开设本课程的,思路和做法。关键词:数据挖掘原理与算法;实例;教学探索0.引言随着经济、科技和信息技术的飞速发展,特别是网络技术的发展,数据的产生和存储能力有了很大程度的提高。数据挖掘的出现,为人们提供了一条解决“数据丰富而知识贫乏”困境的有效途径Ⅲ。所以很多高校,包括世界上一些著名高校都开设了数据挖掘课程。课程的基础理论部分一般包括数据预处理、关联规则、分类、聚类、时间
2、序列挖掘、Web挖掘等内容。该课程使学生学会分析研究数据挖掘中数据预处理、常用算法、结果的可视化等技术,并培养学生的数据抽象能力,帮助学生形成科学思维和专业素养,使他们毕业后在就业上有更多的选择。笔者将探讨基于实例教学的数据挖掘课程的教学内容安排,强调淡化学科背景,加强算法的应用性训练,将实际的例子贯穿于教学中,并重新组织授课内容、安排实践环节,教会学生学以致用。81.教学现状分析1.1课程本质数据挖掘原理与算法涉及的学科领域很宽泛。其最终目的是在数据中挖掘出可供人们利用的知识和信息,因此数据挖掘技术要从数据库技术、统计学、机器学习、神经网络、知识
3、系统、信息检索、高性能计算和可视化等领域汲取营养。另外,每个学科都在进行着日新月异的发展变化,数据挖掘技术遇到的挑战也为相关学科领域的深入研究提供了新的契机。由于课程难度较大,很多高校把这门课程作为研究生的专业课程,也有院校将此课作为本科生高年级选修课开设脚。但是本科生开设这门课程的普通院校较少,我们能借鉴的教学经验有限。1.2数据挖掘课程教学环节的弊端①某些学校对本科生开设的数据挖掘课程,其教学过程对理论的探讨过多,与应用存在距离,没有体现出这门课程面向应用的特质,缺少对学生工程能力的训练,存在学生在学了这门课程后不知道能干什么的现象。②教学形式
4、呆板单一。传统的教师讲、学生听的教学模式,很难引起学生的探究兴趣,不利于发挥他们自身的能动性和创新动机。2.选择恰当实例贯穿数据挖掘课程的教学过程8烟台大学计算机学院所开设的数据挖掘课程在教学上安排了6章内容,涉及3个实例(其中两个是实际生活中的项目课题):第1个是用于房产信息调查的房产客户关系管理系统;第2个是用于烟台大学督评中心评教文本分类的中文文本数据挖掘系统;第3个是用于国家葡萄酒检测中心的数据分析的葡萄酒成分数据挖掘系统。2.1房产客户关系管理系统在讲述房产客户关系管理系统时内容涵盖绪论、知识发现过程和关联规则3章,重点讲授内容包括:(1
5、)数据仓库。住房管理数据仓库中的数据是按主题组织的,可从历史观点提供信息。数据挖掘技术能按知识工程的方法完成高层次需求,可以发现蕴藏在数据内部的知识模式。挖掘后形成的知识表示模式可为企业决策提供支持。(2)通过对客户信息进行分析,阐述关联规则的参数:support、confidence、expectedconfidence,并简单介绍关联规则中的多维、多层次等拓展知识。(3)关联规则挖掘。①讲授关联规则挖掘的Apriori算法;②讲述布尔关联规则的概念,对处理后形成的交易数据库进行布尔关联规则挖掘,将问题转化为寻找以决策属性为结果的规则;③将关联规
6、则挖掘应用于客户关系管理的最终目的是努力将潜在客户转变为现实客户,将满意客户转变为忠诚的终生客户,提高客户满意程度,降低市场销售及宣传成本,增加利润率。8(4)设minsup=10%,minconf=70%。在统计的各类人群中猎取咨询的渠道主要是杂志、报纸、互联网和电视。经试验统计后得到以下有关知识:①满足age>50AND职业=“工人”的客户占所统计总人数的9.7%;其中满足age>50AND职业=“工人”AND渠道=“TV”的客户占92%。②符合学历=“大专”AND职业=“工人”的客户占所统计总人数的24.8%,其中满足学历=“大专”AND职业
7、=“工人”AND渠道=“newspaper”的客户占82%。③被统计人群中满足income=“5000-9000”AND职业=“教师、医生、公务员”的客户占所统计总人数的32.7%;其中满足income=“4000-6000”AND职业=“教师、医生、公务员”AND渠道=“杂志”的客户占83%。④被统计人群中满足学历=“本科”ANDincome≥“10000”的客户占所统计总人数的占11.6%;其中符合学历=“本科”ANDincome≥“8000”AND职业=“公司经理”AND渠道=“杂志”的客户占86.5%。(5)教师要分析Apriori算法的瓶
8、颈和改进,介绍Close算法和FP-树算法,并且要求学生们掌握这3种经典算法。2.2中文文本数据挖掘系统8中文文本数据挖掘
此文档下载收益归作者所有