资源描述:
《高考数学考前解题基本方法 六、参数法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之
2、间的内在联系,利用参数提供的信息,顺利地解答问题。Ⅰ、再现性题组:1.设2=3=5>1,则2x、3y、5z从小到大排列是________________。2.(理)直线上与点A(-2,3)的距离等于的点的坐标是________。(文)若k<-1,则圆锥曲线x-ky=1的离心率是_________。3.点Z的虚轴上移动,则复数C=z+1+2i在复平面上对应的轨迹图像为____________________。4.三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。5.设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y)
3、,且当x>0时,f(x)<0,则f(x)的R上是______函数。(填“增”或“减”)6.椭圆+=1上的点到直线x+2y-=0的最大距离是_____。A.3B.C.D.2【简解】1小题:设2=3=5=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=,所以e=-;3小题:设z=bi,则C=1-b+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则xy
4、=6、yz=4、xz=3,所以xyz=24,体积为4。5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;6小题:设x=4sinα、y=2cosα,再求d=的最大值,选C。Ⅱ、示范性题组:例1.实数a、b、c满足a+b+c=1,求a+b+c的最小值。【分析】由a+b+c=1想到“均值换元法”,于是引入了新的参数,即设a=+t,b=+t,c=+t,代入a+b+c可求。【解】由a+b+c=1,设a=+t,b=+t,c=+t,其中t+t+t=0,∴a+b+c=(+t)+(+t)+(+t)=+(t+t+t)+t+t+t=+t+t+t≥
5、[来源:]所以a+b+c的最小值是。【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a+b+c=(a+b+c)-2(ab+bc+ac)≥1-2(a+b+c),即a+b+c≥。两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。例2.椭圆+=1上有两点P、Q,O为原点。连OP、OQ,若k·k=-,①.求证:
6、OP
7、+
8、OQ
9、等于定值;②.求线段PQ中点M的轨迹方程。[来源:.Com]【分析】由“换元法”引入新的参数,即设(椭圆参数方程)
10、,参数θ、θ为P、Q两点,先计算k·k得出一个结论,再计算
11、OP
12、+
13、OQ
14、,并运用“参数法”求中点M的坐标,消参而得。【解】由+=1,设,P(4cosθ,2sinθ),Q(4cosθ,2sinθ),则k·k==-,整理得到:cosθcosθ+sinθsinθ=0,即cos(θ-θ)=0。∴
15、OP
16、+
17、OQ
18、=16cosθ+4sinθ+16cosθ+4sinθ=8+12(cosθ+cosθ)=20+6(cos2θ+cos2θ)=20+12cos(θ+θ)cos(θ-θ)=20,即
19、OP
20、+
21、OQ
22、等于定值20。由中点坐标公式得到线段PQ的中点M的坐标为,所以有
23、()+y=2+2(cosθcosθ+sinθsinθ)=2,即所求线段PQ的中点M的轨迹方程为+=1。【注】由椭圆方程,联想到a+b=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M点的坐标后,将所得方程组稍作变形,再平方相加,即(cosθ+cosθ)+(sinθ+sinθ),这是求点M轨迹方程“消参法”的关键一步。一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x、y坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。
24、本题的第一问,另一种思路是设直线斜率k