抽样估计与样本量确定ppt课件.ppt

抽样估计与样本量确定ppt课件.ppt

ID:59782853

大小:11.51 MB

页数:49页

时间:2020-11-24

抽样估计与样本量确定ppt课件.ppt_第1页
抽样估计与样本量确定ppt课件.ppt_第2页
抽样估计与样本量确定ppt课件.ppt_第3页
抽样估计与样本量确定ppt课件.ppt_第4页
抽样估计与样本量确定ppt课件.ppt_第5页
抽样估计与样本量确定ppt课件.ppt_第6页
抽样估计与样本量确定ppt课件.ppt_第7页
抽样估计与样本量确定ppt课件.ppt_第8页
抽样估计与样本量确定ppt课件.ppt_第9页
抽样估计与样本量确定ppt课件.ppt_第10页
资源描述:

《抽样估计与样本量确定ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第10章抽样估计与样本量确定10.1引言10.2加权及权数调整10.3抽样分布与抽样误差10.4参数估计10.5样本量的确定110.1引言抽样调查的目的是用样本推断总体。确定样本权数是估计过程中一个重要组成部分。当确定了每个样本单元的权数后,就可以将它们应用于抽样估计,包括总体总量、均值和比例等简单估计值的计算,抽样误差的估计。210.2加权及权数调整估计的第一步,是给每个样本单元或样本中的每个回答赋予一个权数。权数指每个样本单元所代表的调查总体的单元数,由抽样设计决定,所以通常称为设计权数(即样本单元入样概率的倒数)10.2.1等概率抽样的加权10

2、.2.2不等概率抽样加权10.2.3权数的调整310.2.1等概率抽样的加权(自加权设计)入样概率入样概率入样概率410.2.2不等概率抽样加权纽曼分层抽样即是一种不等概率抽样。各层样本单元权数510.2.3权数的调整无回答时需要对权数调整;考虑来自其他渠道、更具权威性的某些辅助信息,合并到权数中。1.对无回答的权数调整2.使用辅助信息调整权数3.事后分层4.比率估计61.对无回答的权数调整无回答调整因子是原来样本单元的权数与给出回答的单元的权数和的比值。对于自加权设计,该比值也等于原样本单元数与给出回答的单元数的比值。72.使用辅助信息调整权数原因

3、:首先,应使调查的估计值与已知的总体总值相匹配,非常重要;其次为了提高估计值的精度。辅助信息还可以用来对不同子总体所对应的不同无回答率进行修正。还可以用来调整由于抽样框涵盖误差导致的调查总体与目标总体之间的差异所造成的影响。83.事后分层数据收集之前,我们可能无法得到合适的分层信息(如年龄或性别),或者抽选样本后可以得到更新、更可靠的分层信息。在数据收集之后,可以利用收集的信息对样本进行分层,从而对样本的权数进行调整,这就是所谓的事后分层。9例10-5利用设计权数计算调查估计值10例10-5114.比率估计比率估计:用一个乘数因子对各类权数进行调整,

4、这个乘数因子就是各类的辅助变量值与同类的样本估计值的比率。如例10-5中,男性层的调整因子(男性数量与男性估计值之比)即是一种乘数因子。1210.3抽样分布与抽样误差总体分布:总体各单位的观测值所形成的频数分布。样本分布:一个样本中各个观测值形成的频数分布。抽样分布:样本统计量的抽样分布是一种理论分布,是指在重复抽取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布。1310.3.1样本均值的抽样分布及抽样误差例10-6:一个总体,含四个元素1、2、3、4,现抽取n=2个简单随机样本。14抽样均值及方差15结论1)2)OR3)若总体那么,4

5、)总体不服从正态分布,当样本量足够大时(大于等于30),样本均值也服从正态分布。1610.3.2样本比例的抽样分布及抽样误差样本容量足够大时重复抽样条件下1710.3.3正态分布及标准值Z标准化18P223-224例题在一项样本量为400的抽样调查中,得知某市夏天人均冷饮消费额50元,标准差50元,而数据直方图表明冷饮消费量近似于正态分布。根据初步的数据分析,可以估计该市夏天冷饮费100元以上消费者的比例。1910.4参数估计参数估计就是根据从样本中收集的信息对总体参数进行推断的过程。根据中心极限定理等推断理论所阐明的抽样分布与总体分布之间的关系,由

6、样本统计量的具体值(估计值)估计总体参数。点估计区间估计20点估计用样本的估计量直接作为总体参数的估计量。存在抽样误差。区间估计在点估计的基础上,对总体参数的区间或范围进行估计(样本统计量加减抽样误差),点估计值落在该区间范围内的概率为置信度或置信系数或置信水平。211、总体均值的区间估计当总体标准差未知时,一般通过样本标准差S来估计总体标准差当总体标准差已知时,样本均值标准误可以通过如下公式:22例10-7232、总体比例的区间估计24例10-8253、总体方差的区间估计对于来自正态总体的简单随机样本,则(n-1)倍的样本方差与总体方差的比值的抽样

7、分布服从自由度为(n-1)的x2分布。总体方差在1-a置信水平下的区间估计为:or26举例P22727练习题课后思考与训练题P237-238第4、5、7题2810.5样本量的确定样本量的确定问题,首先涉及对总体参数估计值的精度要求,同时也涉及与各种运作限制(如可获得的预算、资源和时间)之间的平衡问题。抽样调查估计值的精度是对抽样误差大小的度量。因此确定样本量是为控制抽样误差,而不是非抽样误差。2910.5.1估计精度与样本量之间的关系但实际抽样调查中,以上假定条件可能很难都满足。如样本可能不是重复抽样;抽样方法可能是分层抽样、系统抽样、分群抽样,而非

8、简单随机抽样;调查的回答率实际上很少能达到100%3010.5.2假定条件下样本量的计算及其应用考虑1、确定

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。