(完整版)第二章习题答案.doc

(完整版)第二章习题答案.doc

ID:59768078

大小:2.42 MB

页数:10页

时间:2020-11-23

(完整版)第二章习题答案.doc_第1页
(完整版)第二章习题答案.doc_第2页
(完整版)第二章习题答案.doc_第3页
(完整版)第二章习题答案.doc_第4页
(完整版)第二章习题答案.doc_第5页
资源描述:

《(完整版)第二章习题答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章需求、供给和均衡价格2.假定表2—1(即教材中第54页的表2—5)是需求函数Qd=500-100P在一定价格范围内的需求表:表2—1某商品的需求表价格(元)12345需求量4003002001000(1)求出价格2元和4元之间的需求的价格弧弹性。(2)根据给出的需求函数,求P=2元时的需求的价格点弹性。(3)根据该需求函数或需求表作出几何图形,利用几何方法求出P=2元时的需求的价格点弹性。它与(2)的结果相同吗?解答:(1)根据中点公式ed=-ΔΔQP·P1+P2,Q1+2Q2),有ed=200·2+4,300+

2、100)=1.5222(2)由于当P=2时,Qd=500-100×2=300,所以,有ed=-dQdP·QP=-(-100)·300=2(3)根据图2—4,在a点即P=2时的需求的价格点弹性为ed=GBOG=200300=2或者ed=FOAF=23图2—4显然,在此利用几何方法求出的P=2时的需求的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是ed=23。3.假定表2—2(即教材中第54页的表2—6)是供给函数Qs=-2+2P在一定价格范围内的供给表:表2—2某商品的供给表价格(元)23456

3、供给量246810(1)求出价格3元和5元之间的供给的价格弧弹性。(2)根据给出的供给函数,求P=3元时的供给的价格点弹性。(3)根据该供给函数或供给表作出几何图形,利用几何方法求出P=3元时的供给的价格点弹性。它与(2)的结果相同吗?解答:(1)根据中点公式es=ΔΔQP·P1+P2,Q1+2Q2),有es=42·3+5,4+28)=43(2)由于当P=3时,Qs=-2+2×3=4,所以,es=dQdP·QP=2·34=1.5。(3)根据图2—5,在a点即P=3时的供给的价格点弹性为es=ABOB=64=1.5图2—

4、5显然,在此利用几何方法求出的P=3时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是es=1.5。4.图2—6(即教材中第54页的图2—28)中有三条线性的需求曲线AB、AC和AD。图2—6(1)比较a、b、c三点的需求的价格点弹性的大小。(2)比较a、e、f三点的需求的价格点弹性的大小。解答:(1)根据求需求的价格点弹性的几何方法,可以很方便地推知:分别处于三条不同的线性需求曲线上的a、b、c三点的需求的价格点弹性是相等的。其理由在于,在这三点上,都有ed=FOAF(2)根据求需求的价格点弹性

5、的几何方法,同样可以很方便地推知:分别处于三条不同的线性需求曲线上的a、e、f三点的需求的价格点弹性是不相等的,且有eda<efd<ede。其理由在于在a点有:eda=GBOG在f点有:efd=GCOG在e点有:eed=GDOG在以上三式中,由于GB<GC<GD,所以,ead<efd<eed。5.利用图2—7(即教材中第55页的图2—29)比较需求价格点弹性的大小。(1)图(a)中,两条线性需求曲线D1和D2相交于a点。试问:在交点a,这两条直线型的需求的价格点弹性相等吗?(2)图(b)中,两条曲线型的需求曲线D1和

6、D2相交于a点。试问:在交点a,这两条曲线型的需求的价格点弹性相等吗?图2—7解答:(1)因为需求的价格点弹性的定义公式为ed=-dQdP·QP,此公式的-dQdP项是需求曲线某一点斜率的绝对值的倒数,又因为在图(a)中,线性需求曲线D1的斜率的绝对值小于线性需求曲线D2的斜率的绝对值,即需求曲线D1的-dQdP值大于需求曲线D2的-dQdP值,所以,在两条线性需求曲线D1和D2的交点a,在P和Q给定的前提下,需求曲线D1的弹性大于需求曲线D2的弹性。(2)因为需求的价格点弹性的定义公式为ed=-dQdP·QP

7、,此公式中的-dQdP项是需求曲线某一点的斜率的绝对值的倒数,而曲线型需求曲线上某一点的斜率可以用过该点的切线的斜率来表示。在图(b)中,需求曲线D1过a点的切线AB的斜率的绝对值小于需求曲线D2过a点的切线FG的斜率的绝对值,所以,根据在解答(1)中的道理可推知,在交点a,在P和Q给定的前提下,需求曲线D1的弹性大于需求曲线D2的弹性。12.假定某商品销售的总收益函数为TR=120Q-3Q2。求:当MR=30时需求的价格弹性。解答:由已知条件可得MR=dTRdQ=120-6Q=30(1)得Q=15由式(1)式中的边

8、际收益函数MR=120-6Q,可得反需求函数P=120-3Q(2)将Q=15代入式(2),解得P=75,并可由式(2)得需求函数Q=40-P3。最后,根据需求的价格点弹性公式有ed=-dQdP·QP=--13·7515=5313.假定某商品的需求的价格弹性为1.6,现售价格为P=4。求:该商品的价格下降多少,才能使得销售量增

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。