资源描述:
《平面直角坐标变换.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§5.7平面直角坐标变换为了考虑同一图形在不同的坐标系下的方程之间的关系,我们首先需要建立同一个点在不同的坐标系下的坐标之间的关系,这就是坐标变换的问题,因为我们研究的图形是点的轨迹.我们仅考虑平面直角坐标变换.设在平面上给出了由两个标架{O;i,j}和{O';i',j'}所决定的右手直角坐标系,这里i和j以及i'和j'是两组坐标基向量,它们是平面上的两个标准正交基,我们依次称这两个坐标系为旧坐标系和新坐标系.由于坐标系的位置完全由原点和坐标基向量所决定,所以新坐标系与旧坐标系之间的关系,就由O'在{O;i,j}中的坐标以及i'和j'在{O;i,j}中的分量所决定.任一直角坐标
2、变换总可以分解成移轴(也叫坐标平移)和转轴(也叫坐标旋转)两个步骤.1.移轴如果两个标架{;,j}和{O';i,j'}的原点与O'不同,O'在{;,j}OiOOi中的坐标为(x,y),但两标架的坐标基向量相同,即有00i'=i,j'=j那么标架{O';i',j'}可以看成是由标架{O;i,j}将原点平移到O'点而得来的(图5.7.1).这种坐标变换叫做移轴(坐标平移).设P是平面内任意一点,它对标架{;,j}和{O';i',j'}的坐标分别为(x,Oiy)与(x,y),则有OPOOOPyy'但OPxiyj,POPxiyj,jOOx0iy0ji于是有jO'(x0,y0)x'xiy
3、j(xx0)i(yy0)jOix故{x,y}={x0,y0}+{x',y'}根据向量相等的定义得移轴公式为图5.7.1xxx0(5.7-yyy01)从中解出x'和y',就得逆变换公式为xxx0(5.7-yyy02)2.转轴若两个标架{;,j}和{O';i',j'}的原点相同,即O=O',但坐标基向量不Oi同,且有∠(i,i')=a,则标架{O';i',j'}可以看成是由标架{O;i,j}绕O点旋转a角而得来的(图5.7.2).这种由标架{O;i,j}到标架{O';i',j'}的坐标变换叫做转轴(坐标旋转).下面推导转轴公式.设P是平面内任意一点,它对{O;i,yj}和{O';i
4、',j'}的坐标分别为(x,y)y'P与(x,y),即有x'OPxiyjj'ji'OPxiyjOix因为∠(i,i')=a,新旧坐标基本向量之间有关系iicosjsin图5.7.2jicosπjsinπisinjcos22于是有OPx(icosjsin)y(isinjcos)(xcosysin)i(xsinycos)j因为和O'是同一点,OPOP,故可直接得到转轴公式:Oxxcosysin(5.7-yxsinycos3)从(5.7-3)中解出x'和y',就得到用旧坐标表示新坐标的逆变换公式:xxcosysin(5.7-yxsinycos4)式中的a为坐标轴的旋转角.(5.7-4
5、)式也可看成是由标架{O;i',j'}绕O旋转-a角变到{O;i,j}的转轴公式.*根据线性代数的理论,(5.7xx-3)可写为Q,这里的坐标变换的矩阵yyQcossin是一个正交矩阵,因而其逆矩阵Q1QT,逆变换公式可以直接由sincosxQTx写出.yy3.一般坐标变换公式在一般情况下,由旧坐标系O-xy变成新坐标系O'-x'y',总可以分两步来完成.即先移轴使坐标原点与新坐标系的原点O'重合,变成坐标系O'-xy,然后再由辅助坐标系O'-x"y"转轴而成新坐标系O'-x'y'(图5.7.3).设平面上任一点P的旧坐标与新坐标分别为(x,y)与(x',y'),而在辅助坐标系
6、O'-x"y"中的坐标为(x",y"),那么由(5.7-1)与(5.7-4)分别得yy"xxx0y'yyx0Px'xxcosysin与xsinycosyO'(x0,y0)x"由上两式得一般坐标变换公式为Ox图5.7.3xxcosysinx0(5.7-yxsinycosy05)由(5.7-5)解出x',y'便得逆变换公式xxcosysin(x0cosy0sin)-(x0sin(5.7yxsinycosy0cos)6)(x0,y0)与坐标轴的旋转角a决平面直角坐标变换公式(5.7-5)是由新坐标系原点的坐标定的.4.由给定的新坐标轴确定的坐标变换确定坐标变换公式,除了坐标平移和旋转
7、外,还可以有其它方法.假定已给出了新坐标系的两坐标轴在旧坐标系中的方程,并规定了一个轴的正方向,就可以确定又一种坐标变换公式.设在直角坐标系xOy里给定了两条相互垂直的直线l1:A1xB1yC10,l2:22=0yAx+B2y+Cl2:A2xB2yC20y'M0.如果取直线l1为新x'其中A1A2B1B2y'坐标系中的横轴O'x',而直线l2为纵轴x'O'y',并设平面上任意点M的旧坐标与新坐标分别是(x,y)与(x',y').因为
8、x'
9、是点M(x,y)到O'y'轴的距离,l1:A1x+