圆的知识点总结(史上最全的).docx

圆的知识点总结(史上最全的).docx

ID:59591159

大小:177.79 KB

页数:9页

时间:2020-11-14

圆的知识点总结(史上最全的).docx_第1页
圆的知识点总结(史上最全的).docx_第2页
圆的知识点总结(史上最全的).docx_第3页
圆的知识点总结(史上最全的).docx_第4页
圆的知识点总结(史上最全的).docx_第5页
资源描述:

《圆的知识点总结(史上最全的).docx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.圆的总结集合:圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线

2、点与圆的位置关系:点在圆内dr点A在圆外直线与圆的位置关系:直线与圆相离d>r无交点直线与圆相切d=r有一个交点直线与圆相交dR+rdr外切(图2)有一个交点d=R+rR相交(图3)有两个交点R-r

3、是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中①AB是直径②AB⊥CD③CE=DE④??⑤?BCBDACdrR图5dRr图32个即可推出其它3个结论,即:?AD1/8.推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CDACDOOABE圆心角定理CDB圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的

4、弧相等,弦心距相等此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:①∠AOB=∠DOE②AB=DE③OC=OF??④BAED圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB和∠ACB是所对的圆心角和圆周角∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O中,∵∠C、∠D都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧

5、是半圆,所对的弦是直径即:在⊙O中,∵AB是直径或∵∠C=90°∴∠C=90°∴AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在△ABC中,∵OC=OA=OBB∴△ABC是直角三角形或∠C=90°注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。弦切角定理:弦切角等于所夹弧所对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。即:∵MN是切线,AB是弦∴∠BAM=∠BCAN圆内接四边形EFODACBCBOADCBO

6、ACBACOAOCOBAM圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。D即:在⊙O中,∵四边形ABCD是内接四边形C∴∠C+∠BAD=180°B+∠D=180°∠DAE=∠CB2/8AE.切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN⊥OA且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点推论2:过切点垂直于切线的直线必过圆心以上三个定

7、理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件∵MN是切线M∴MN⊥OA切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线P∴PA=PBPO平分∠BPAOANBOA圆内相交弦定理及其推论:(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等即:在⊙O中,∵弦AB、CD相交于点P∴PA·PB=PC·PA(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙O中

8、,∵直径AB⊥CD∴CE2DE2EAgEB(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项BCOEADD即:在⊙O中,∵PA是切线,PB是割线∴PA2PCgPBBOPCA3/8.圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=1:3:2(2)正四边形1:1:2同理,四边形的有关计算在Rt△OAE中进行

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。