欢迎来到天天文库
浏览记录
ID:59551163
大小:5.54 MB
页数:148页
时间:2020-11-10
《求放大电路的输入电阻和输出电阻只是课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、求放大电路的输入电阻和输出电阻2.1半导体三极管2.1.1基本结构NNP基极发射极集电极NPN型BECBECPNP型PPN基极发射极集电极符号:BECIBIEICBECIBIEICNPN型三极管PNP型三极管基区:最薄,掺杂浓度最低发射区:掺杂浓度最高发射结集电结BECNNP基极发射极集电极结构特点:集电区:面积最大BE输入输出CB输入输入输出输出BEECC共基极共发射极共集电极2.1.2电流分配和放大原理1.三极管放大的外部条件BECNNPEBRBECRC发射结正偏、集电结反偏PNP发射结正偏VB2、VE集电结反偏VC>VB2.各电极电流关系及电流放大作用IB(mA)IC(mA)IE(mA)00.020.040.060.080.10<0.0010.701.502.303.103.95<0.0010.721.542.363.184.05结论:1)三电极电流关系IE=IB+IC2)ICIB,ICIE3)ICIBβ=IC/IB把基极电流的微小变化能够引起集电极电流较大变化的特性称为晶体管的电流放大作用。实质:用一个微小电流的变化去控制一个较大电流的变化,是CC3、CS器件。3.三极管内部载流子的运动规律BECNNPEBRBECIEIBEICEICBO基区空穴向发射区的扩散可忽略。发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。进入P区的电子少部分与基区的空穴复合,形成电流IBE,多数扩散到集电结。从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICE。集电结反偏,有少子形成的反向电流ICBO。3.三极管内部载流子的运动规律IC=ICE+ICBOICEICIBBECNNPEBRBECIEIBEICEICBOIB=IBE-ICBOIBEICE与IBE之4、比称为共发射极直流电流放大倍数集-射极穿透电流,温度ICEO(常用公式)若IB=0,则ICICE02.1.3特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线:1)直观地分析管子的工作状态2)合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线发射极是输入回路、输出回路的公共端共发射极电路输入回路输出回路测量晶体管特性的实验线路ICEBmAAVUCEUBERBIBECV++––––++1.输5、入特性特点:非线性死区电压:硅管0.5V,锗管0.1V。正常工作时发射结电压:NPN型硅管UBE0.6~0.7VPNP型锗管UBE0.2~0.3VIB(A)UBE(V)204060800.40.8UCE1VO2.输出特性IB=020A40A60A80A100A36IC(mA)1234UCE(V)912O放大区输出特性曲线通常分三个工作区:(1)放大区在放大区有IC=IB,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。IB=020A40A66、0A80A100A36IC(mA)1234UCE(V)912O(2)截止区IB<0以下区域为截止区,有IC0。在截止区发射结处于反向偏置,集电结处于反向偏置,晶体管工作于截止状态。饱和区截止区(3)饱和区当UCEUBE时,晶体管工作于饱和状态。在饱和区,IBIC,发射结处于正向偏置,集电结也处于正偏。深度饱和时,硅管UCES0.3V,锗管UCES0.1V。工作状态(晶体管工作状态的判定)放大截止饱和1.根据PN结UBE>0UBE≤0UBE>0偏置电压(正偏)(反偏)(正偏)UBC<0UBC<0UBC≥7、0(反偏)(反偏)(正偏)2.根据IB0<IB<IBS≈0≥IBSIBICIEIC=IB≈0<IBIE=IB+IC≈0<(1+)IBIBS=EC-UCES/RC硅管临界饱和UCES=0.5V深饱和UCES≈0.1~0.3V工作状态(晶体管工作状态的判定)3.测量管压UBEUCE放大0.7VUCES<UCE<EC截止≤0≈EC饱和≥0.7V≤UCES2.1.4主要参数1.电流放大系数,直流电流放大系数交流电流放大系数当晶体管接成发射极电路时,表示晶体管特性的数据称为晶体管的参数,晶体管的参数也是设计电路、选用8、晶体管的依据。注意:和的含义不同,但在特性曲线近于平行等距并且ICE0较小的情况下,两者数值接近。常用晶体管的值在20~200之间。100左右为宜。例:在UCE=6V时,在Q1点IB=40A,IC=1.5mA;在Q2点IB=60A,IC=2.3mA,求在以后的计算中,一般作近似处理:=。IB=020A40A60A
2、VE集电结反偏VC>VB2.各电极电流关系及电流放大作用IB(mA)IC(mA)IE(mA)00.020.040.060.080.10<0.0010.701.502.303.103.95<0.0010.721.542.363.184.05结论:1)三电极电流关系IE=IB+IC2)ICIB,ICIE3)ICIBβ=IC/IB把基极电流的微小变化能够引起集电极电流较大变化的特性称为晶体管的电流放大作用。实质:用一个微小电流的变化去控制一个较大电流的变化,是CC
3、CS器件。3.三极管内部载流子的运动规律BECNNPEBRBECIEIBEICEICBO基区空穴向发射区的扩散可忽略。发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。进入P区的电子少部分与基区的空穴复合,形成电流IBE,多数扩散到集电结。从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICE。集电结反偏,有少子形成的反向电流ICBO。3.三极管内部载流子的运动规律IC=ICE+ICBOICEICIBBECNNPEBRBECIEIBEICEICBOIB=IBE-ICBOIBEICE与IBE之
4、比称为共发射极直流电流放大倍数集-射极穿透电流,温度ICEO(常用公式)若IB=0,则ICICE02.1.3特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线:1)直观地分析管子的工作状态2)合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线发射极是输入回路、输出回路的公共端共发射极电路输入回路输出回路测量晶体管特性的实验线路ICEBmAAVUCEUBERBIBECV++––––++1.输
5、入特性特点:非线性死区电压:硅管0.5V,锗管0.1V。正常工作时发射结电压:NPN型硅管UBE0.6~0.7VPNP型锗管UBE0.2~0.3VIB(A)UBE(V)204060800.40.8UCE1VO2.输出特性IB=020A40A60A80A100A36IC(mA)1234UCE(V)912O放大区输出特性曲线通常分三个工作区:(1)放大区在放大区有IC=IB,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。IB=020A40A6
6、0A80A100A36IC(mA)1234UCE(V)912O(2)截止区IB<0以下区域为截止区,有IC0。在截止区发射结处于反向偏置,集电结处于反向偏置,晶体管工作于截止状态。饱和区截止区(3)饱和区当UCEUBE时,晶体管工作于饱和状态。在饱和区,IBIC,发射结处于正向偏置,集电结也处于正偏。深度饱和时,硅管UCES0.3V,锗管UCES0.1V。工作状态(晶体管工作状态的判定)放大截止饱和1.根据PN结UBE>0UBE≤0UBE>0偏置电压(正偏)(反偏)(正偏)UBC<0UBC<0UBC≥
7、0(反偏)(反偏)(正偏)2.根据IB0<IB<IBS≈0≥IBSIBICIEIC=IB≈0<IBIE=IB+IC≈0<(1+)IBIBS=EC-UCES/RC硅管临界饱和UCES=0.5V深饱和UCES≈0.1~0.3V工作状态(晶体管工作状态的判定)3.测量管压UBEUCE放大0.7VUCES<UCE<EC截止≤0≈EC饱和≥0.7V≤UCES2.1.4主要参数1.电流放大系数,直流电流放大系数交流电流放大系数当晶体管接成发射极电路时,表示晶体管特性的数据称为晶体管的参数,晶体管的参数也是设计电路、选用
8、晶体管的依据。注意:和的含义不同,但在特性曲线近于平行等距并且ICE0较小的情况下,两者数值接近。常用晶体管的值在20~200之间。100左右为宜。例:在UCE=6V时,在Q1点IB=40A,IC=1.5mA;在Q2点IB=60A,IC=2.3mA,求在以后的计算中,一般作近似处理:=。IB=020A40A60A
此文档下载收益归作者所有