【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc

【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc

ID:59545090

大小:218.50 KB

页数:7页

时间:2020-11-09

【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc_第1页
【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc_第2页
【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc_第3页
【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc_第4页
【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc_第5页
资源描述:

《【电动汽车拆解】马达(十):不用永久磁铁的驱动马达.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、目前,电动汽车以及混合动力车的驱动马达必不可少地要采用高成本的稀土材料。东京理科大学着眼于SR马达,开发出了用于混合动力车的驱动马达。实现了与丰田上一代“普锐斯”马达同等尺寸、输出功率、扭矩及效率。另外还通过充分利用分析软件,改进了磁芯材料以及马达构造  东京理科大学试制出了用于混合动力车用的驱动马达(图1)。其特点是采用了完全不使用磁铁的SR(开关磁阻)马达构造。这表明,即使不采用钕类磁铁等成本较高的稀土类材料,也能制造出驱动马达。  由于稀土类材料不仅受到产国以及产量的限制,而且容易成为投机的对象,因此,市场价格随着时间的不同,有时会出现2~3倍的变动。如果此次

2、试制的驱动马达能实用化,那么,汽车厂商就能比以前更大程度地降低混合动力车的价格,并且能够面向未来制定稳定的量产计划。图1:此次试制的驱动马达(a)外观。驱动马达没有采用普通的IPM(内嵌式永磁同步)马达构造,而是采用了SR(开关磁阻)马达的构造。实现了与上一代“普锐斯”IPM马达同等的性能指标。(b)马达内部的磁芯构造。定子为18极,转子为12极。通过增加极数,提高了扭矩。定子上带有线圈。  丰田“普锐斯”以及本田“Insight”等代表性混合动力车的驱动马达,是在转子中嵌入钕类磁铁而成的IPM(内嵌式永磁同步)马达。IPM马达由于既可利用磁铁扭矩、又可利用磁阻(R

3、eluctance)扭矩,因此,效率及性能较高。然而,由于制造起来仍然依赖钕类磁铁,所以希望有新的解决方案。  另一方面,SR马达虽然具有不使用磁铁的特点,但由于不能利用磁铁扭矩,只能利用磁阻扭矩,因而存在着效率及扭矩较低的问题。因此,要想实现混合动力车所需要的效率及扭矩,则必需加大马达的尺寸,所以采用SR马达被认为不是现实可行的方法。  此次设计的SR马达通过在马达的材料及构造上下工夫,在与丰田上一代普锐斯(2003年推出)的IPM马达同等尺寸的条件下,确保了效率、扭矩以及输出功率(表1)。具体而言,在1200rpm条件下,实现了50kW(上一代普锐斯为50kW)

4、的输出功率、403N·m(上一代普锐斯为400N·m)的扭矩以及86%(上一代普锐斯为83%)的效率。今后,将对所试制马达的性能是否达到了设计值进行验证。借助磁阻差旋转  SR马达利用转子与定子间产生的磁阻差,使转子产生旋转。在两者的磁阻由高变低的作用下,定子不停地吸引转子。  在转子与定子的凸极重合的地方,转子与定子的间隙(距离)变小,磁阻也变小。  相反,在间隙较大的地方,磁阻也变大。系统找出转子与定子之间磁阻减少的组合,并向对象定子的线圈中通入电流,由此使转子产生旋转。转子与定子的磁极重合时以及不重合时的电感(磁力)差越大,扭矩也越大。在构造及材料上下工夫 此

5、次试制的SR马达是通过马达磁场分析软件设计的。通过分析软件,选择了马达磁芯的材料以及马达的构造。  上一代普锐斯的IPM马达的积厚(磁芯的轴向厚度)为83.6mm,如果将71.4mm的线圈尾端长度(线圈突出于磁芯轴向长度之外的长度)包含在内,则约为156mm。由于线圈为分布卷绕方式,因而线圈尾端较长,磁芯的积厚不能做得太大。  而SR马达由于采用了集中卷绕方式,因此,可减短线圈尾端,相应地增大了马达磁芯的积厚。开发SR马达时,就把与上一代普锐斯的IPM马达相同的大小的扭矩作为了开发目标。  磁芯材料方面,为板厚为0.35mm的硅钢板,与普锐斯等车型上通用的“35A3

6、00”(JIS标准)与JFE钢铁的“10JNEX900”(厚度为0.10mm)进行了对比。10JNEX900含有6.5%的硅。  随着频率增高,通用件35A300的铁损增幅变得比10JNEX900更大(图2)。此处的频率与转子的极数成比例。另外,已知如果增加转子的极数,则扭矩增大。也就是说,较大的扭矩可通过增加极数来得到(表2)。通过分析软件的估算得知,如果定子/转子的极数从6:4变成8:6,则最大扭矩从160N·m增至221N·m。图2:提高频率后的铁损对两种磁芯的钢板进行了对比。如果频率增大,则铁损出现显著差异。  在相同极数的马达方面,在对2种钢板进行对比时(

7、1200rpm时),通用型的35A300获得了较大的扭矩(表3)。由此前的分析可以认为,采用通用型的35A300对扭矩有利。然而,混合动力车用马达还需要提高效率。效率可表示为如下算式。效率=输出功率(W)/(输出功率(W)+铁损(W)+铜损(W))输出功率=扭矩(N·m)×旋转角速度(rad/s)效率越高,就表示能够将铁损及铜损降低到越少的程度。而铁损会随转速的升高而增大,铜损会随着扭矩的增大而增加。通过对2块钢板制作效率图后发现,高速(高转速区:3000~7000rpm)下的效率方面,10JNEX900显示高出了2~3%的数值。这是由于高转速(高频)区的铁损较

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。