欢迎来到天天文库
浏览记录
ID:59524469
大小:907.00 KB
页数:6页
时间:2020-11-07
《学案:简单几何体的外接球与内切球.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、简单几何体的外接球与内切球基础知识1.球心到截面的距离与球半径及截面的半径有以下关系:.2.球面被经过球心的平面截得的圆叫大圆.被不经过球心的平面截得的圆叫小圆 .3.球的表面积表面积S=;球的体积V=.一、与球的截面有关的问题例1(1)一平面截一球得到直径为6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.cm3B.cm3C.cm3D.cm3(2)两个平行平面去截半径为5的球,若截面面积分别为,则这两个平行平面间的距离是()A.1B.7C.3或4 D.1或7(3)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积
2、的比为。二、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正方体如图1所示,正方体,设正方体的棱长为,为棱的中点,为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形和其内切圆,则;二是与正方体各棱相切的球,截面图为正方形和其外接圆,则;三是球为正方体的外接球,截面图为长方形和其外接圆,则.图1图2图3通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两
3、个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例2.棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为()A.B.C.D.【练习】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A.2B.4C.8D.162.2球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例3.在长、宽、高分别为
4、2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A.B.4πC.D.【练习】已知正四棱柱的底边和侧棱长均为,则该正四棱锥的外接球的表面积为.2.3球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱的高为底面边长为,如图2所示,和分别为上下底面的中心.根据几何体的特点,球心必落在高的中点,借助直角三角形的勾股定理,可求.例4.已知底面边长为正三棱柱的六个顶点在球上,又知球与此正三棱柱的5个面都相切,求球与球的体积之比与表面积之比。例5.正四棱柱的
5、各顶点都在半径为的球面上,则正四棱柱的侧面积有最值,为.【练习】直三棱柱的六个顶点都在球的球面上,若,,,则球的表面积为()A.B.C.D.CBADSOE图4三、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.3.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体的棱长为,内切球半径为,外接球的半径为,
6、取的中点为,为在底面的射影,连接为正四面体的高.在截面三角形,作一个与边和相切,圆心在高上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为.此时,,则有解得:这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,外接球半径是内切球半径的3倍,即球心为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例6.过球表面上一点引三条长度相等的弦、、,且两两夹角都为,若球半径为,求弦的长度.例7.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个
7、球,使它与前三个都相切,求第四个球的最高点与桌面的距离.例8.将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()3.2球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥的外接球的球心和正方体的外接球的球心重合.设,则.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,
8、它的外接球的球心就是三棱锥的外接球的球心.(为长方体的体对角线长).例9.在正三棱锥中,分别是
此文档下载收益归作者所有