广度(宽度)优先搜索lppt课件.ppt

广度(宽度)优先搜索lppt课件.ppt

ID:59471367

大小:251.00 KB

页数:42页

时间:2020-09-14

广度(宽度)优先搜索lppt课件.ppt_第1页
广度(宽度)优先搜索lppt课件.ppt_第2页
广度(宽度)优先搜索lppt课件.ppt_第3页
广度(宽度)优先搜索lppt课件.ppt_第4页
广度(宽度)优先搜索lppt课件.ppt_第5页
资源描述:

《广度(宽度)优先搜索lppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、广度(宽度)优先搜索深度搜索与广度搜索区分[深度搜索与广度搜索]深度搜索与广度搜索的区别:深度搜索下一次扩展的是本次扩展出来的子节点中的一个,而广度搜索扩展的则是本次扩展的节点的兄弟节点。在具体实现上为了提高效率,所以采用了不同的数据结构。广度搜索是求解最优解的一种较好的方法,而深度搜索多用于只要求解,并且解答树中的重复节点较多并且重复较难判断时使用,但往往可以用回溯算法代替。一些基本概念节点:记录扩展的状态。弧/边:记录扩展的路径。搜索树:描述搜索扩展的整个过程。节点的耗散值令C(i,j)为从节点ni到nj的这段路径(或者弧)的耗散值,一条路径的耗散值就等于连接这

2、条路径各节点间所有弧的耗散值总和。可以用递归公式描述如下:C(ni,t)=C(ni,nj)+C(nj,t)4搜索树根节点叶子节点4,5,6,7,88123567广度优先搜索的过程广度优先搜索算法(又称宽度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。广度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节

3、点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即⒈从图中的某一顶点V0开始,先访问V0;⒉访问所有与V0相邻接的顶点V1,V2,......,Vt;⒊依次访问与V1,V2,......,Vt相邻接的所有未曾访问过的顶点;⒋循此以往,直至所有的顶点都被访问过为止。这种搜索的次序体现沿层次向横向扩长的趋势,所以称之为广度优先搜索。广度搜索策略综合数据库(变量设置)与问题相关的所有数据元素构成的集合,用来表述问题状态或有关事实。产生式规则构建了综合数据库以后,还需要研究问题的移动规则,称为产生式规则。搜索策略搜索策略的实质

4、是确定如何选取规则的方式。有两种基本方式:一种是不考虑给定问题所具有的特定知识,系统根据事先确定好某种固定顺序,依次调用规则或随机调用规则,这实际上是盲目搜索的方法。另一种是考虑问题领域可应用的知识,动态地确定规则的排列次序,优先调用较合适的规则使用,这就是通常所说的启发式搜索策略。广度优先搜索算法描述:Programbfs;初始化,初始状态存入队列;队列首指针head:=0;尾指针tail:=1;repeat指针head后移一位,指向待扩展结点;fori:=1tomaxdobegin//max为产生子结点的规则数if子结点符合条件thenbegintail指针增1

5、,把新结点存入列尾;if新结点与原已产生结点重复then删去该结点(取消入队,tail减1)elseif新结点是目标结点then输出并退出;end;end;until(head>=tail);//队列为空广度优先搜索注意事项1、每生成一个子结点,就要提供指向它们父亲结点的指针。当解出现时候,通过逆向跟踪,找到从根结点到目标结点的一条路径。当然不要求输出路径,就没必要记父亲。2、生成的结点要与前面所有已经产生结点比较,以免出现重复结点,浪费时间,还有可能陷入死循环。3、如果目标结点的深度与“费用”(如:路径长度)成正比,那么,找到的第一个解即为最优解,这时,搜索速度比

6、深度搜索要快些,在求最优解时往往采用广度优先搜索;如果结点的“费用”不与深度成正比时,第一次找到的解不一定是最优解。4、广度优先搜索的效率还有赖于目标结点所在位置情况,如果目标结点深度处于较深层时,需搜索的结点数基本上以指数增长。八数码问题在3*3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1—8中的某一个数码。棋盘中留有一个空格,允许其周围的某一个将牌向空格中移动,如图1所示。这样通过移动将牌就可以不断改变的布局结构,给出一个初始布局(称初始状态)和一个目标布局(称目标状态),问如何移动将牌,才能实现从初始状态到目标状态的转换。下面我们看看怎样用宽度优先搜索

7、来解决八数码问题。图2给出广度优先搜索应用于八数码难题时所生成的搜索树。搜索树上的所有结点都标记它们所对应的状态,每个结点旁边的数字表示结点扩展的顺序。粗线条路径表明求得的一个解。从图中可以看出,扩展第26个结点,总共生成46个结点之后,才求得这个解。此外,直接观察此图表明,不存在有更短走步序列的解。八数码问题扩展搜索树综合数据库(变量设置){Pxy},其中1<=x,y<=3,Pxy∈{0,1,2,3,4,5,6,7,8},且Pxy互不相等用Pascal语言描述如下:typet8no=array[1..3,1..3]oflongint;{棋盘状态}tList=r

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。