数学建模(美赛)数学规划ppt课件.ppt

数学建模(美赛)数学规划ppt课件.ppt

ID:59470478

大小:4.05 MB

页数:393页

时间:2020-09-14

数学建模(美赛)数学规划ppt课件.ppt_第1页
数学建模(美赛)数学规划ppt课件.ppt_第2页
数学建模(美赛)数学规划ppt课件.ppt_第3页
数学建模(美赛)数学规划ppt课件.ppt_第4页
数学建模(美赛)数学规划ppt课件.ppt_第5页
资源描述:

《数学建模(美赛)数学规划ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、线性规划整数规划目标规划非线性规划动态规划图论排队论数学规划模型线性规划目的内容2.掌握用数学软件包求解线性规划问题.1.了解线性规划的基本内容.2.用数学软件包MATLAB求解线性规划问题.1.两个引例.3.建模案例:投资的收益与风险.问题:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件.假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表.问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?引例解设在甲车床上加工工件1、2、

2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6,可建立以下线性规划模型:解答线性规划模型的一般形式目标函数和所有的约束条件都是设计变量的线性函数.用MATLAB优化工具箱解线性规划minz=cX1.模型:命令:x=linprog(c,A,b)2.模型:minz=cX命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A=[],b=[].3.模型:minz=cXVLB≤X≤VUB命令:[1]x=linprog(c,A,b,Aeq,beq,VLB,VUB)[2]x=linprog(c,A,b,

3、Aeq,beq,VLB,VUB,X0)注意:[1]若没有等式约束:,则令Aeq=[],beq=[].[2]其中X0表示初始点4.命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.解编写M文件xxgh1.m如下:c=[-0.4-0.28-0.32-0.72-0.64-0.6];A=[0.010.010.010.030.030.03;0.02000.0500;00.02000.050;000.03000.08];b=[850;700;100;900];Aeq=[];beq=[];vlb=[0;0;0;0;0;0];vub=[];[x

4、,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)xxgh1.m解:编写M文件xxgh2.m如下:c=[634];A=[010];b=[50];Aeq=[111];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)ToMATLAB(xxgh2)s.t.改写为:例3问题一的解答问题编写M文件xxgh3.m如下:f=[1391011128];A=[0.41.110000000.51.21.3];b=[800;900];Aeq=[1001000100100

5、01001];beq=[400600500];vlb=zeros(6,1);vub=[];[x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)ToMATLAB(xxgh3)结果:x=0.0000600.00000.0000400.00000.0000500.0000fval=1.3800e+004即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800.投资的收益和风险二、基本假设和符号规定三、模型的建立与分析1.总体风险用所投资的Si中最大的一个风险来衡量,即max{

6、qixi

7、i=1,2,…,n}4.模型简化:四、模型1的求解由于a是任意给定的风险度,到底怎样给定没有一个准则,不同的投资者有不同的风险度.我们从a=0开始,以步长△a=0.001进行循环搜索,编制程序如下:a=0;while(1.1-a)>1c=[-0.05-0.27-0.19-0.185-0.185];Aeq=[11.011.021.0451.065];beq=[1];A=[00.025000;000.01500;0000.0550;00000.026];b=[a;a;a;a];vlb=[0,0,0,0,0];vub=[];[x,val]=linprog(c

8、,A,b,Aeq,beq,vlb,vub);ax=x'Q=-valplot(a,Q,'.'),axis([00.100.5]),holdona=a+0.001;endxlabel('a'),ylabel('Q')ToMATLAB(xxgh5)计算结果:五、结果分析返回4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快.在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约是a*=0.6%,Q*=20%,所对应投资方案为:风险度收益x0x1x2x3x40.00

9、600.201900.2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。