欢迎来到天天文库
浏览记录
ID:59467187
大小:1.99 MB
页数:61页
时间:2020-09-14
《第二章轴向拉压应力ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章轴向拉压应力§2–1引言§2–2拉压杆的应力与圣维南原理§2–3材料拉伸时的力学性能§2–4材料拉压的力学性能的进一步研究§2–5应力集中与材料疲劳§2–6失效、许用应力与强度条件§2–7连接部分的强度计算ABCF§2-1引言一、工程实例:工程桁架、活塞杆、厂房的立柱等。FFF二、轴向拉压的概念:(2)变形特点:杆沿轴线方向伸长或缩短。(1)受力特点:FN1FN1FN2FN2外力合力作用线与杆轴线重合。FF以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。三、轴向拉压杆的内力和内力图1.内力:物体内部各粒子之间的相互作用力。2.附加内力:由
2、外力作用而引起的物体内部各粒子之间相互作用力的改变量(材料力学中的内力)。—利用平衡条件,列出平衡方程,求出内力的大小。—取其中一部分为研究对象,移去另一部分,把移去部分对留下部分的相互作用力用内力代替。—欲求哪个截面的内力,就假想的将杆从此截面截开,杆分为两部分。内力的确定——截面法(基本方法)1、截开2、代替3、平衡例:已知外力F,求:1-1截面的内力FN。解:FF1—1∑X=0,FN-F=0,FFN(截面法确定)①截开②代替,FN代替。③平衡方程FN=FFNF以1-1截面的右段为研究对象:内力FN是沿轴线,所以称为轴力。∑X=0,F-FN=0
3、,FN=F(2)轴力的符号规定:原则—根据变形压缩—压力,其轴力为负值。方向指向所在截面。拉伸—拉力,其轴力为正值。方向背离所在截面。FNFFFN(+)FNFFFN(-)(3)轴力图:①取坐标系②选比例尺③正值的轴力画在X轴的上侧,负值的轴力画在X轴的下侧。+FNx①直观反映轴力与截面位置变化关系;(4)轴力图的意义轴力沿轴线变化的图形FF②确定出最大轴力的数值及其所在横截面的位置,即确定危险截面位置,为强度计算提供依据。(5)注意的问题①在截开面上设正的内力方向。②采用截面法之前,不能将外力简化、平移。FNPFFFFN5kN8kN3kN3kN5k
4、N例1:画左图杆的轴力图。解:1-1截面,左段2-2截面,右段[例2]图示杆的A、B、C、D点分别作用着大小为5F、8F、4F、F的力,方向如图,试求各段内力并画出杆的轴力图。FN1ABCDFAFBFCFDO解:求OA段内力FN1:设截面如图ABCDFAFBFCFDFN2FN3DFDFN4ABCDFAFBFCFDO求CD段内力:求BC段内力:求得AB段内力:BCDFBFCFDCDFCFDFN3=5F,FN4=FFN2=–3F,轴力图如右图示FNx2F5F3FFABCDFAFBFCFDOFN3=5F,FN4=FFN2=–3F,解:x坐标向右为正,坐标
5、原点在自由端。[例3]图示杆长为l,受分布力q=kx作用,方向如图,试画出杆的轴力图。lq(x)FN(x)xq(x)FNxO–取左侧x段为对象,内力FN(x)为:§2-2轴向拉压杆的应力与圣维南原理一、问题提出:FFFF1.内力大小不能全面衡量构件强度的大小。2F2F2.构件的强度由两个因素决定:①内力在截面分布集度应力;②材料承受荷载的能力。如:钢,铜、木材等。杆横截面上内力是如何分布的?二、轴向拉压杆横截面上正应力的确定推导思路:实验→变形规律→应力的分布规律→应力的计算公式内力看不见变形可见所以,由变形分析内力的分布。内力变形由变形分析内力
6、的分布。1、实验:变形前受力后FF2、变形规律:横向线——仍为平行的直线,且间距增大。纵向线——仍为平行的直线,且间距减小。3、平面假设:变形前的横截面,变形后仍为平面且各横截面沿杆轴线作相对平移5、应力的计算公式:由于“均布”,可得——轴向拉压杆横截面上正应力的计算公式4、应力的分布规律——内力沿横截面均匀分布F7、正应力的符号规定——同内力拉伸——拉应力,为正值,方向背离所在截面。压缩——压应力,为负值,方向指向所在截面。6、拉压杆内最大的正应力:等直杆:变直杆:8、公式的使用条件(1)轴向拉压杆(2)除外力作用点附近以外其它各点处。(范围:
7、不超过杆的横向尺寸)(1)公式中各值单位要统一10、注意的问题9、圣维南原理:作用于杆上的外力可以用其等效力系代替,但替换后外力作用点附近的应力分布将产生显著影响,且分布复杂,其影响范围不超过杆件的横向尺寸。“FN”代入绝对值,在结果后面可以标出“拉”、“压”。外力的等效外力对内力的影响区域三、轴向拉压杆任意斜面上应力的计算1、斜截面上应力确定(1)内力确定:(2)应力确定:①应力分布——均布②应力公式——FNα=FN=F。FFFFFNα2、符号规定⑴、α:斜截面外法线与x轴的夹角。x轴逆时针转到n轴“α”规定为正值;x轴顺时针转到n轴“α”规定为
8、负值。⑵、σα:同“σ”的符号规定⑶、τα:在保留段内任取一点,如果“τα”对其点之矩为顺时针方向规定为正值,反之为负值。
此文档下载收益归作者所有