资源描述:
《空间几何体的结构及其三视图和直观图公开课ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第八章立体几何28.1空间几何体的结构及其三视图和直观图知识梳理双基自测23411.空间几何体的结构特征平行且相等全等任意多边形有一个公共顶点的三角形相似4知识梳理双基自测2341矩形直角边直角腰圆锥半圆面或圆面5知识梳理双基自测23412.三视图(1)几何体的三视图包括,分别是从几何体的方、方、方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:,,.②画法规则:一样高,一样长,一样宽;看不到的轮廓线画线.正视图、侧视图、俯视图正前正左正上长对正高平齐宽相等正侧正俯侧俯虚6知识梳理双基自测23413.直观图(1)画法:常
2、用画法.(2)规则①原图形中x轴、y轴、z轴两两垂直,直观图中,x'轴、y'轴的夹角为,z'轴与x'轴和y'轴所在平面.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段长度在直观图中,平行于y轴的线段长度在直观图中.斜二测45°(或135°)垂直保持不变变为原来的一半7知识梳理双基自测23414.常用结论(1)常见旋转体的三视图①球的三视图都是半径相等的圆.②底面与水平面平行放置的圆锥的正视图和侧视图均为全等的等腰三角形.③底面与水平面平行放置的圆台的正视图和侧视图均为全等的等腰梯形.④底面与水平面
3、平行放置的圆柱的正视图和侧视图均为全等的矩形.8知识梳理双基自测234192知识梳理双基自测34151.下列结论正确的打“√”,错误的打“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)棱台是由平行于棱锥底面的平面截棱锥所得的平面与底面之间的部分.()(3)夹在圆柱的两个平行截面间的几何体还是圆柱.()(4)画几何体的三视图时,看不到的轮廓线应画虚线.()(5)在用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中∠A=45°.()答案答案关闭(1)×(2)√
4、(3)×(4)√(5)×10知识梳理双基自测234152.(教材习题改编P8TA1(2))给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3答案答案关闭A11知识梳理双基自测23415解析①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面
5、都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.12知识梳理双基自测234153.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()答案解析解析关闭答案解析关闭13知识梳理双基自测234154.沿一个正方体三个面的对角线截得的几何体如图所示,则
6、该几何体的侧(左)视图为()答案解析解析关闭答案解析关闭14知识梳理双基自测234155.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是.答案解析解析关闭由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案解析关闭115考点1考点2考点3例1下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在
7、直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线思考如何熟练应用空间几何体的结构特征?答案:D16考点1考点2考点3解析:A错误,如图(1)是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图(2),若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长
8、必大于底面边长,这与题设矛盾.图(1)图(2)17考点1考点2考点3解题心得1.要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力.2.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的