欢迎来到天天文库
浏览记录
ID:59429835
大小:64.19 KB
页数:3页
时间:2020-09-03
《高中数学:向量法解立体几何总结.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A、B是直线l上的任意两点,则AB为直线l的一个方向向量;与AB平行的任意非零向量也是直线l的方向向量.⑵.平面的法向量:若向量n所在直线垂直于平面,则称这个向量垂直于平面,记作n,如果n,那么向量n叫做平面的法向量.⑶.平面的法向量的求法(待定系数法):①建立适当的坐标系.②设平面的法向量为n(x,y,z).③求出平面内两个不共线向量的坐标a(a1,a2,a
2、3),b(b1,b2,b3).na0.④根据法向量定义建立方程组0nb⑤解方程组,取其中一组解,即得平面的法向量.2、用向量方法判定空间中的平行关系⑴线线平行。设直线l1,l2的方向向量分别是a、b,则要证明l1∥l2,只需证明a∥b,即akb(kR).⑵线面平行。设直线l的方向向量是a,平面的法向量是u,则要证明l∥,只需证明au,即au0.⑶面面平行。若平面的法向量为u,平面的法向量为v,要证∥,只需证u∥v,即证uv.3、用向量方法判定空间的垂直关系⑴线线垂直。设直线l1,l2的方向向量分别是a、b,则要证明l1l2
3、,只需证明ab,即ab0.⑵线面垂直①(法一)设直线l的方向向量是a,平面的法向量是u,则要证明l,只需证明a1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯∥u,即au.②(法二)设直线l的方向向量是a,平面内的两个相交向量分别为m、n,若am0,则l.an0⑶面面垂直。若平面的法向量为u,平面的法向量为v,要证,只需证uv,即证uv0.4、利用向量求空间角⑴求异面直线所成的角已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则cosACB
4、D.ACBD⑵求直线和平面所成的角求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为,a与u的夹角为,则为的余角或的补角的余角.即有:sinaucos.au⑶求二面角二面角的平面角是指在二面角l的棱上任取一点O,分别在两个半平面内作射线AOl,BOl,则AOB为二面角l的平面角.如图:ABlOBOA求法:设二面角l的两个半平面的法向量分别为m、n,再设m、n的夹角为,二面角l的平面角为,则二面角为m、n的夹角或其补角.根据具体图形确定是锐角或是钝角:是锐角,则cosmn,即arccosmn如果cos;m
5、nmn2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯是钝角,则cosmn,即arccosmn如果cos.mnmn5、利用法向量求空间距离⑴点Q到直线l距离若Q为直线l外的一点,P在直线l上,a为直线l的方向向量,b=PQ,则点Q到直线l距离为h1(
6、a
7、
8、b
9、)2(ab)2
10、a
11、⑵点A到平面的距离若点P为平面外一点,点M为平面内任一点,平面的法向量为n,则P到平面的距离就等于MP在法向量n方向上的投影的绝对值.即dMPcosn,MPMPnMPnMPnMPn⑶直线a与平面之
12、间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等。由此可知,直线到平面即dnMP的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。.n⑷两平行平面,之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。即nMPd.n⑸异面直线间的距离设向量n与两异面直线a,b都垂直,Ma,Pb,则两异面直线a,b间的距离d就是nMPMP在向量n方向上投影的绝对值。即d.n3
此文档下载收益归作者所有