欢迎来到天天文库
浏览记录
ID:59391801
大小:925.50 KB
页数:20页
时间:2020-05-29
《算法分析与设计实验报告之01背包问题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、算法分析与设计实验报告[0/1背包问题]0/1背包问题的不同算法解决方案组员黄希龙张育强周麒目录一.问题描述1二.算法分析21.穷举法:22.递归法:43.贪心法:54.动态规划法分析:65.回溯法分析:76.分支限界法:9三.时空效率分析101.穷举法:102.递归法:113.动态规划法:114.回溯法:115分支限界法:11四.运行结果121.穷举法输出结果:122.递归法输出结果:133.动态规划法输出结果:144.回溯法输出结果:155.分支限界法输出结果:16五.分析输出结果17六.总结与反思18一.问题描述0/1背包问题
2、:现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二.算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量。首先说明一下0-1背包问题拥有最优解。假设是所给的问题的一个最优解,则是下面问题的一个最优解:。如果不是的话,设是这个问题的一
3、个最优解,则,且。因此,,这说明是所给的0-1背包问题比更优的解,从而与假设矛盾。1.穷举法:用穷举法解决0-1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。由于程序过于简单,在这里就不再给出,用实例说明求解过程。下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。(a)四个物品和一个容量为10的背包序号子集总重量总价值序号子集总重量总价值1空集009{2,3}7522{1}74210{2,4}83
4、73{2}31211{3,4}9654{3}44012{1,2,3}14不可行5{4}52513{1,2,4}15不可行6{1,2}105414{1,3,4}16不可行7{1,3}11不可行15{2,3,4}12不可行8{1,4}12不可行16{1,2,3,4}19不可行穷举法代码如下:2.递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。每次的递归调用都会判断两种情况:(1)背包可以放下第n个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物品数目为n-1的递归函数,并返回此递归函数值与v[n]的和
5、作为背包问题的最优解;(2)背包放不下第n个物品,则x[n]=0,并继续递归调用背包容量为W,物品数目为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。用递归法解0-1背包问题可以归结为下函数:第一个式子表示选择物品n后得到价值比不选择物品n情况下得到的价值小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n后的价值不小于不选择物品n情况下得到了价值,所以最终选择物品n。在递归调用的过程中可以顺便求出所选择的物品。下面是标记物品
6、被选情况的数组x[n]求解的具体函数表示:在函数中,递归调用的主体函数为KnapSack,m表示背包的容量,n表示物品的数量,x[n]表示是否选择了第n个物品(1—选,0—不选)。每个物品的重量和价值信息分别存放在数组w[n]和v[n]中。代码如下:3.贪心法:0-1背包问题与背包问题类似,所不同的是在选择物品装入背包时,可以选择一部分,而不一定要全部装入背包。这两类问题都具有最优子结构性质,相当相似。但是背包问题可以用贪心法求解,而0-1背包问题却不能用贪心法求解。贪心法之所以得不到最优解,是由于物品不允许分割,因此,无法保证最终
7、能将背包装满,部分闲置的背包容量使背包单位重量的价值降低了。事实上,在考虑0-1背包问题时,应比较选择物品和不选择物品所导致的方案,然后做出最优解。由此导出了许多相互重叠的子问题,所以,0-1背包问题可以用动态规划法得到最优解。在这里就不再用贪心法解0-1背包问题了。4.动态规划法分析:0-1背包问题可以看作是寻找一个序列,对任一个变量的判断是决定=1还是=0.在判断完之后,已经确定了,在判断时,会有两种情况:(1)背包容量不足以装入物品i,则=0,背包的价值不增加;(2)背包的容量可以装下物品i,则=1,背包的价值增加。这两种情况
8、下背包的总价值的最大者应该是对判断后的价值。令表示在前i个物品中能够装入容量为j的背包的物品的总价值,则可以得到如下的动态规划函数:式(1)说明:把前面i个物品装入容量为0的背包和把0个物品装入容量为j的背包,得到的价值均为0.式(2
此文档下载收益归作者所有