欢迎来到天天文库
浏览记录
ID:59286773
大小:799.00 KB
页数:12页
时间:2020-09-06
《高二数学必修二知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高二数学必修2知识点总结第1章空间几何体一、空间几何体的结构1.多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。2.旋转体:我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。这条定直线叫做旋转体的轴。3、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分
2、类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义
3、:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥
4、的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。二、空间几何体的三视图和直观图1.投影:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影。其中我们把光线叫做投影线,把留下物体影子的屏幕叫做投影面。2.中心投影:我们把光
5、由一点向外散射形成的投影,叫做中心投影。3.平行投影:我们把在一束平行光线照射下形成的投影,叫做平行投影。(又分为正投影和斜投影)4空间几何体的三视图(1)、定义三视图:正视图(从前向后;即光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。正侧俯(2)、三视图图形的位置:(3)、三视图长、宽、高的关系:
6、“正侧长对齐、正俯高对齐、侧俯宽相等”三、空间几何体的直观图1.斜二测画法:对于平面多边形,我们常用斜二测画法画它们的直观图。斜二测画法是一种特殊的平行投影画法。2.斜二测画法原则:横不变,纵减半。3.斜二测画法步骤:①在已知图形中取互相垂直的轴和轴,两轴相交于点。画直观图时,把它们画成对应的轴与轴,两轴交于点,且使(或135°),它们确定的平面表示水平面。②已知图形中平行于轴或轴的线段,在直观图中分别画成平行于轴或轴的线段。③已知图形中平行于轴的线段,在直观图中保持原长度不变,平行于轴的线段,长度为原来的一半。四、空间
7、几何体的表面积与体积(1)、几何体的表面积为几何体各个面的面积的和。所以,棱柱、棱锥的表面积:各个面的面积之和。(2):柱体锥体台体球体第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示DCBAα(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABC
8、D等。3三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为LA·αA∈LB∈L=>LαA∈αB∈αC·B·A·α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线=>有且只有一个平面α,使A∈α、B∈α、C∈
此文档下载收益归作者所有