BP网络学习4部曲.doc

BP网络学习4部曲.doc

ID:59256730

大小:88.00 KB

页数:10页

时间:2020-09-08

BP网络学习4部曲.doc_第1页
BP网络学习4部曲.doc_第2页
BP网络学习4部曲.doc_第3页
BP网络学习4部曲.doc_第4页
BP网络学习4部曲.doc_第5页
资源描述:

《BP网络学习4部曲.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、学习内容总结成4个小节,具体内容如下:第一节内容:包括神经网络的基础知识,BP网络的特点,bp主要应用的场合,使用时应注意的问题。第二节内容:主要是阐述BP中几个容易混淆的概念和问题,包括什么是网络的泛化能力?过拟合是什么,怎么处理?学习速率有什么作用?神经网络的权值和阈值分别是个什么概念?用BP逼近非线性函数,如何提高训练精度?第三节内容:主要阐述使用matlab实现,为了充分利用数据,得到最优的网络训练结果,在网络建立前,应该进行的基本数据处理问题,包括:BP神经网络matlab实现的基本步骤,数据归一化问题和

2、方法,输入训练数据的顺序排法,以及分类方法,如何查看和保存训练的结果,每次结果不一样问题。第四节内容:bp神经网络进行交通预测的Matlab例子及源代码,bp神经网络进行交通预测的Matlab程序的优化(主要是根据设置误差要求,寻找最优网络过程)什么是神经网络?神经网络是由很多神经元组成的,首先我们看一下,什么是神经元上面这个图表示的就是一个神经元,不管其它书上说的那些什么树突,轴突的。用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解:1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络

3、后2、这些数据的每一个都会被乘上一个数,即权值w,然后这些东东相加后得到u,3、上面只是线性变化,为了达到能处理非线性的目的,u做了个变换,变换的规则和传输函数有关可能还有人问,那么那个阀值是什么呢?简单理解就是让这些数据做了个平移,这就是神经元工作的过程。处理后的结果又作为输入,可输给别的神经元,很多这样的神经元,就组成了网络。在matlab中具体用什么算法实现这些,我们先不管,我们需要注意的是怎么使用。比如使用BP的神经网络newff()构建一个网络,这些在后面的学习将提到。BP网络的特点①网络实质上实现了一个

4、从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题。无需建立模型,或了解其内部过程,只需输入,获得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;③网络具有一定的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事物预测

5、,控制等)分类识别(进行类型划分,模式识别等),在后面的学习中,将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;b存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区

6、域内,权值误差改变很小,使训练过程几乎停顿;c为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。2、网络训练失败的可能性较大,其原因有:a从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;b网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。3、网络结构的选择:尚无一种统一而完整的理论指导,一般只能由经

7、验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。4、新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征数目也必须相同。5、采用s型激活函数,由于输出层各神经元的理想输出值只能接近于1或0,而不能打到1或0,因此设置各训练样本的期望输出分量Tkp时,不能设置为1或0,设置0.9或0.1较为适宜。第二节本节主要学习BP中几个容易混淆的概念和问题:什么是网络的泛化能力?过拟合是什么,怎么处理?学习速率有什么作用

8、?神经网络的权值和阈值分别是个什么概念?用BP逼近非线性函数,如何提高训练精度?什么是网络的泛化能力?一个神经网路是否优良,与传统最小二乘之类的拟合评价不同(主要依据残差,拟合优度等),不是体现在其对已有的数据拟合能力上,而是对后来的预测能力,既泛化能力。网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。