欢迎来到天天文库
浏览记录
ID:59254040
大小:582.50 KB
页数:5页
时间:2020-09-08
《matlab神经网络工具箱创建神经网络.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、matlab神经网络工具箱创建神经网络为了看懂师兄的文章中使用的方法,研究了一下神经网络昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,百度知道里倒是有一个,可以运行的,先贴着做标本%生成训练样本集clearall;clc;P=[1100.8072400.21511821.5;1102.8652400.11521212;1102.592400.11242411.5;2200.62400.31231821;22032400.32532111.5;1101.5622400.31531811.5;1100.5472400.3151921.5];01.3183000.11521812
2、];T=[54248;28614639586963782898;86002;;602577675373541;346159353280762;56783];@907];m=max(max(P));n=max(max(T));P=P'/m;T=T'/n;%-------------------------------------------------------------------------%pr(1:9,1)=0;%输入矢量的取值范围矩阵pr(1:9,2)=1;bpnet=newff(pr,[124],{'logsig','logsig'},'traingdx','learng
3、dm');%建立BP神经网络,12个隐层神经元,4个输出神经元%tranferFcn属性'logsig'隐层采用Sigmoid传输函数%tranferFcn属性'logsig'输出层采用Sigmoid传输函数%trainFcn属性'traingdx'自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数%learn属性'learngdm'附加动量因子的梯度下降学习函数 net.trainParam.epochs=1000;%允许最大训练步数2000步net.trainParam.goal=0.001;%训练目标最小误差0.001net.trainParam.show=10;%每间隔
4、100步显示一次训练结果net.trainParam.lr=0.05;%学习速率0.05bpnet=train(bpnet,P,T);%-------------------------------------------------------------------------p=[1101.3183000.11521812];p=p'/m;r=sim(bpnet,p);R=r'*n;display(R);运行的结果是出现这样的界面点击performance,trainingstate,以及regression分别出现下面的界面再搜索,发现可以通过神经网络工具箱来创建神经网络,比较
5、友好的GUI界面,在输入命令里面输入nntool,就可以开始了。点击import之后就出现下面的具体的设置神经网络参数的对话界面,这是输入输出数据的对话窗首先是训练数据的输入然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等点击view,可以看到这是神经网络的可视化直观表达创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果下面三个图形则是点击performan
6、ce,trainingstate以及regression而出现的下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了在主界面上点击export就能将得到的out结果输入到matlab中并查看下图就是输出的两个outputs结果
此文档下载收益归作者所有