VRLA电池加酸量的确定.doc

VRLA电池加酸量的确定.doc

ID:59252132

大小:27.50 KB

页数:6页

时间:2020-09-08

VRLA电池加酸量的确定.doc_第1页
VRLA电池加酸量的确定.doc_第2页
VRLA电池加酸量的确定.doc_第3页
VRLA电池加酸量的确定.doc_第4页
VRLA电池加酸量的确定.doc_第5页
资源描述:

《VRLA电池加酸量的确定.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、VRLA电池加酸量的确定  2009-11-1911:48:25

2、  分类:蓄电池

3、  标签:

4、字号大中小 订阅   曲阜圣阳电源实业有限公司  闫新华                 VRLA电池相对于以前的开口富液式电池,其最大的优势是在电池寿命期间不需要添加电解液或水维护,电池可以任意位置放置使用等等。这就要求电解液被完全固定在AGM隔板和活性物质中不能流动,并且为了实现其寿命期间不需要加酸加水维护,就必须要实现电池寿命期内的氧循环,即不能有电解液的损失。而形成氧循环的关键一点要求就是要严格限定电池内的

5、酸液总量,并且必须保证AGM隔板留有10%左右的孔不被电解液所淹没,从而为氧气的循环复合提供通道。但是又必须要求电池中电解液的总量能够维持活性物质放电反应的需要。要想使电池中电解液总量完全够用,又能够为氧气的循环复合提供通道,就需要根据电池的实际用途,正确确定和控制电池的加酸量,下面将从三个大的方面来探讨VRLA电池加酸量确定的问题。1、最低加酸量VRLA电池需要的酸体积,取决于电池放电态与荷电态所要求的电解液密度以及电池放电过程输出的总电量和放电率。通常在VRLA设计时,荷电态的电解液密度要求1.28~1.

6、30g/cm3,当其放出100%额定容量时又希望电解液密度为1.07~1.09g/cm3。这就要求电池中电解液总量至少必须满足能够维持电池在一定条件下放出其额定容量所必须消耗的电解液总量,因此VRLA电池的最低用酸量可根据电池反应方程式推导如下:电池反应:   PbO2+Pb+2H2SO4=2PbSO4+2H2O根据电池充放电反应的方程式,结合充放电态物质各自的电化学当量值可知,电池每放出1Ah的电量,要消耗纯的H2SO43.66g,生成水0.67g。设放电开始时电池中电解液密度为15℃下的ρ1(下文提到电解

7、液密度时温度都指的15℃),对应的质量百分比浓度为m%,放电终了时电解液密度为ρ2,对应的质量百分比浓度为n%。当电解液密度由ρ1降到ρ2时,反应开始时加入的密度为ρ1的酸的体积为Vml。则根据电池反应式中每放出1Ah电量所消耗的硫酸量为3.66g,生成的水的质量为0.67g,经过方程式两边等值计算,整理得出VRLA电池中每放出1Ah电量的最低用酸体积V的表达式为:如果设定电池荷电态的电解液密度为1.28g/cm3,放电态的电解液密度为1.08g/cm3,则将各自对应的质量百分比数值带入最低用酸体积V值的表达

8、式中可以得出放电容量为C的电池的最低用酸体积为:10.24C就是在15℃下设定荷电态电解液密度为1.28g/cm3,放电态为1.08g/cm3的最低加酸体积。当然,电池中实际的加酸体积还需要根据电池的用途,以及为此进行的电池结构设计和活性物质设计来进行综合考虑确定。2、电池中硫酸的来源  不同生产工艺制造的VRLA电池,由于生产方式的不同,最终电池中硫酸电解液的来源也不同。对于极板化成来说,在化成过程中,生极板中的硫酸全部转化为游离的电解液,经过水洗、干燥后,极板中基本上已经不再含有电解液了,酸的唯一来源就是

9、电池装配后补充电前所加的电解液,按照设计要求进行加酸即可。对于电池化成来说,又分为一次注液化成和二次注液化成,二次注液化成由于过程中有抽酸的过程,因此,具体极板中酸液的引入量不好计算。目前VRLA电池普遍采用的化成方法是一次注液化成。因此,这一部分主要讨论一次注液化成VRLA电池电解液硫酸的来源。对于一次注液电池化成的VRLA电池,硫酸的来源主要有两个,一是正负极铅膏制备时加入的硫酸通过合膏、固化以及化成完全转化为硫酸,这一部分硫酸直接按照合膏中的加酸比例计算电池中活性物质内的酸含量即可。另一部分则是电池化成

10、前加入的酸量,这一加酸量是电池加酸总量的主要组成部分。主要根据电池的结构分析在保证电池中氧复合条件下所最多可以吸收的硫酸量,并且要考虑电池在化成过程中的酸液损失来确定这个加酸量。此数值的确定必须要考虑电池中隔板的压缩比以及电池中隔板的总量,因为AGM隔板是VRLA电池中电解液的主要载体,而隔板的压缩比又极大地影响其吸酸量。但是不论电池的结构如何变化,电池的加酸量必须不能小于第一部分分析的电池的最低加酸量。3、电池中酸液的分配众所周知,VRLA电池中没有游离酸存在,酸液被全部吸收在极板活性物质空隙中和AGM的空

11、隙中。极板活性物质的吸液量与活性物质的孔率和质量有关。电池设计时,通常活性物质的质量都是预先确定的,因为在设计和组装电池时,单极板的额定容量通常都是已经确定了的。如此,活性物质对吸酸量的影响主要是其孔率的大小等。而活性物质的孔率主要与极板固化前铅膏所含的水分密切相关,从数值上说,基本相等。但是实际空隙体积在极板固化过程中由于金属铅的进一步氧化,碱式硫酸铅的重结晶等影响而会有复杂的变化。并且极板在实际

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。