勾股定理的证明(比较全的证明方法)知识讲稿.ppt

勾股定理的证明(比较全的证明方法)知识讲稿.ppt

ID:59245618

大小:1.33 MB

页数:21页

时间:2020-09-26

勾股定理的证明(比较全的证明方法)知识讲稿.ppt_第1页
勾股定理的证明(比较全的证明方法)知识讲稿.ppt_第2页
勾股定理的证明(比较全的证明方法)知识讲稿.ppt_第3页
勾股定理的证明(比较全的证明方法)知识讲稿.ppt_第4页
勾股定理的证明(比较全的证明方法)知识讲稿.ppt_第5页
资源描述:

《勾股定理的证明(比较全的证明方法)知识讲稿.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、325242美妙的勾股定理——数形结合之美在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股勾股弦的定义走进数学史两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.因此不断出现关于勾股定理的新证法.1.传说中毕达哥拉斯的证法2.赵爽弦图的证法4.美国第20任总统茄菲尔德的证法3.刘徽的证法勾股定理的证明5

2、.其他证法勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。现在在网络上看到较多的是16种,包括前面的6种,还有:返回这棵树漂

3、亮吗?如果在树上挂上几串彩色灯泡,再挂上些小铃铛、小彩球、小礼盒、小的圣诞老人,是不是更像一棵圣诞树.也许有人会问:“它与勾股定理有什么关系吗?”仔细看看,你会发现,奥妙在树干和树枝上,整棵树都是由下方的这个基本图形组成的:一个直角三角形以及分别以它的每边为一边向外所作的正方形.这个图形有什么作用呢?不要小看它哦!古希腊的数学家毕达哥拉斯就是利用这个图形验证了勾股定理.关于勾股定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方

4、形等于两直角边上的两个正方形之和”.其证明是用面积来进行的.传说中毕达哥拉斯的证法已知:如图,以在Rt△ABC中,∠ACB=90°,分别以a、b、c为边向外作正方形.求证:a2+b2=c2.数学故事链接相传两千五百年前,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系,同学们,我们也来观察下面的图案,看看你能发现什么?探索勾股定理数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?SA+SB=SCABC探索勾股定理ABCSA=a2SB=b2SC=c2abca2+b2=c2设:直

5、角三角形的三边长分别是a、b、c猜想:两直角边a、b与斜边c之间的关系?SA+SB=SC探索勾股定理返回∴S矩形ADNM=2S△ADC.又∵正方形ACHK和△ABK同底(AK)、等高(即平行线AK和BH间的距离),∴S正方形ACHK=2S△ABK.∵AD=AB,AC=AK,∠CAD=∠KAB,∴△ADC≌△ABK.由此可得S矩形ADNM=S正方形ACHK.同理可证S矩形MNEB=S正方形CBFG.∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG.即S正方形ADEB=S正方形ACHK+S正方形C

6、BFG,也就是a2+b2=c2.传说中毕达哥拉斯的证法证明:从Rt△ABC的三边向外各作一个正方形(如图),作CN⊥DE交AB于M,那么正方形ABED被分成两个矩形.连结CD和KB.返回∵由于矩形ADNM和△ADC同底(AD),等高(即平行线AD和CN间的距离),刘徽在《九章算术》中对勾股定理的证明:勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也.令正方形ABCD为朱方,正方形BEFG为青方.在BG间取一点H,使AH=BG,裁下△ADH,移至△CDI,裁下△HG

7、F,移至△IEF,是为“出入相补,各从其类”,其余不动,则形成弦方正方形DHFI.勾股定理由此得证.刘徽的证法返回我国对勾股定理的证明采取的是割补法,最早的形式见于公元三、四世纪赵爽的《勾股圆方图注》.在这篇短文中,赵爽画了一张他所谓的“弦图”,其中每一个直角三角形称为“朱实”,中间的一个正方形称为“中黄实”,以弦为边的大正方形叫“弦实”,所以,如果以a、b、c分别表示勾、股、弦之长,那么:赵爽弦图的证法得:c2=a2+b2.返回学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关

8、于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的:1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。