核磁共振演示实验.doc

核磁共振演示实验.doc

ID:59154198

大小:1.05 MB

页数:10页

时间:2020-09-11

核磁共振演示实验.doc_第1页
核磁共振演示实验.doc_第2页
核磁共振演示实验.doc_第3页
核磁共振演示实验.doc_第4页
核磁共振演示实验.doc_第5页
资源描述:

《核磁共振演示实验.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、医学影像物理实验讲义核磁共振生物医学工程教研室核磁共振实验1924年,泡利为了解释光谱的精细结构提出了原子核具有磁矩的设想。1939年美国哥伦比亚大学的I.I.拉比(Rabi)等人在原子束实验中首次观察到核磁共振(NuclearMagneticResonance,NMR)现象,验证了泡利的想法。1946年,美国哈佛大学的珀塞尔(Purcell)和斯坦福大学的布洛赫(Bloch)分别报道了石蜡和水中观察到的质子核磁共振吸收信号的研究结果。两个研究小组用了稍微不同的方法,几乎同时在凝聚态物质中首次发现了核磁共振。因此,布洛赫和珀塞尔分享了1952年的诺贝尔

2、物理学奖。核磁共振具有核磁元素多、选择性高、分辨率高、灵敏度高、能进行动态观测等特点,因此它的应用十分广泛。在物理学方面,利用NMR可以研究原子核的结构和性质、凝聚体的相变、弛豫过程和临界现象等;在化学工业方面,利用NMR可以研究有机材料的反应过程等;在生物医学方面,利用NMR可以研究生物组织甚至活体组织的的组织和生化过程,可以结合NMR谱与NMR成像做生理分析及医学诊断等。此外,还广泛应用于工业、农业、考古等领域。一、实验目的1、掌握NMR的基本原理及观测方法。2、用磁场扫描法(扫场法)观察核磁共振现象。3、由共振条件测定氟核(19F)的g因子。二、

3、实验原理对于处于恒定外磁场中的原子核,如果同时再在与恒定外磁场垂直的方向上加一交变电磁场,就有可能引起原子核在子能级间的跃迁,跃迁的选择定则是,磁量子数的改变为,也即只有在相邻的两子能级间的跃迁才是允许的。这样,当交变电磁场的频率所相应的能量刚好等于原子核两相邻子能级的能量差时,即(1)时,处于低子能级的原子核就可以从交变电磁场吸收能量而跃迁到高子能级。这就是前面提到的,原子核系统在恒定和交变磁场同时作用下,并且满足一定条件时所发生的共振吸收现象——核磁共振现象。由式(1)可以得到发生核磁共振的条件是(2)满足式(2)的频率称为共振频率。如果用圆频率表

4、示,则共振条件可以表示为(3)由式(3)可知,对固定的原子核,旋磁比一定,调节共振频率和恒定磁场两者或者固定其一调节另一个就可以满足共振条件,从而观察核磁共振现象。FD-CNMR-Ⅱ型核磁共振实验仪采用永磁铁,是定值,所以对不同的样品,调节射频场的频率使之达到共振频率,满足共振条件,核即从低能态跃迁至高能态,同时吸收射频场的能量,使得线圈的值降低产生共振信号。由于示波器只能观察交变信号,所以必须使核磁共振信号交替出现,FD-CNMR-Ⅱ型核磁共振实验仪采用扫场法满足这一要求。在稳恒磁场上叠加一个低频调制磁场,这个调制磁场实际是由一对亥姆霍兹线圈产生,此

5、时样品所在区域的实际磁场为。由于调制场的幅值很小,总磁场的方向保持不变,只是磁场的幅值按调制频率发生周期性变化,拉摩尔进动频率也相应地发生周期性变化,即(4)这时只要射频场的角频率调在变化范围之内,同时调制磁场扫过共振区域,即,则共振条件在调制场的一个周期内被满足两次,所以在示波器上观察到如图1-(b)所示的共振吸收信号。此时若调节射频场的频率,则吸收曲线上的吸收峰将左右移动。当这些吸收峰间距相等时,如图1-(a)所示,则说明在这个频率下的共振磁场为。如果扫场速度很快,也就是通过共振点的时间比弛豫时间小得多,这时共振吸收信号的形状会发生很大的变化。在通

6、过共振点后,会出现衰减振荡,这个衰减的振荡称为“尾波”,尾波越大,说明磁场越均匀。三、实验仪器核磁共振实验仪主要包括磁铁及扫场线圈、探头与样品、边限振荡器、磁场扫描电源、频率计及示波器。实验装置图见图2。图2核磁共振实验装置示意图(一)磁铁磁铁的作用是产生稳恒磁场,它是核磁共振实验装置的核心,要求磁铁能够产生尽量强的、非常稳定、非常均匀的磁场。首先,强磁场有利于更好的观察核磁共振信号;其次,磁场空间分布均匀性和稳定性越好则核磁共振实验仪的分辨率越高。核磁共振实验装置中的磁铁有三类:永久磁铁、电磁铁和超导磁铁。永久磁铁的优点是,不需要磁铁电源和冷却装置,

7、运行费用低,而且稳定度高。电磁铁的优点是通过改变励磁电流可以在较大范围内改变磁场的大小。为了产生所需要的磁场,电磁铁需要很稳定的大功率直流电源和冷却系统,另外还要保持电磁铁温度恒定。超导磁铁最大的优点是能够产生高达十几特斯拉的强磁场,对大幅度提高核磁共振谱仪的灵敏度和分辨率极为有益,同时磁场的均匀性和稳定性也很好,是现代谱仪较理想的磁铁,但仪器使用液氮或液氦给实验带来了不便。FD-CNMR-Ⅱ型核磁共振教学仪采用永磁铁,磁场均匀度高于。(二)边限振荡器边限振荡器具有与一般振荡器不同的输出特性,其输出幅度随外界吸收能量的轻微增加而明显下降,当吸收能量大于

8、某一阈值时即停振,因此通常被调整在振荡和不振荡的边缘状态,故称为边限振荡器。如图(2)所示,样

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。