基于实例的学习ppt课件.ppt

基于实例的学习ppt课件.ppt

ID:59121779

大小:180.50 KB

页数:22页

时间:2020-09-25

基于实例的学习ppt课件.ppt_第1页
基于实例的学习ppt课件.ppt_第2页
基于实例的学习ppt课件.ppt_第3页
基于实例的学习ppt课件.ppt_第4页
基于实例的学习ppt课件.ppt_第5页
资源描述:

《基于实例的学习ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第8章基于实例的学习InstanceBasedLearning1InstanceBasedLearningk-NearestNeighborLocallyweightedregressionRadialbasisfunctionsCase-basedreasoningLazyandeagerlearning2NearestneighborKeyidea:juststorealltrainingexamplesNearestneighbor:Givenqueryinstancexq,firstlocatenearesttrainingexamplexn,thenestimate3k-Ne

2、arestneighbork-Nearestneighbor:Givenxq,Ifdiscrete-valuedtargetfunction:takevoteamongitsknearestnbrsIfreal-valuedtargetfunction:takemeanoffvaluesofk-nearestnbrs4WhenToConsiderNearestNeighborInstancesmaptopointsinLessthan20attributesperinstanceLotsoftrainingdata5Advantages&DisadvantagesAdvantagesT

3、rainingisveryfastLearncomplextargetfunctionsDon’tloseinformationDisadvantagesSlowatquerytimeEasilyfooledbyirrelevantattributes6VoronoiDiagram7BehaviorintheLimitConsiderp(x)definesprobabilitythatinstancexwillbelabeled1(positive)versus0(negative)NearestneighborAsnumberoftrainingexamples∞approache

4、sGibbsAlgorithmGibbs:withprobabilityp(x)predict1else08BehaviorintheLimitConsiderp(x)definesprobabilitythatinstancexwillbelabeled1(positive)versus0(negative)k-NearestneighborAsnumberoftrainingexamples∞andkgetslarge,approachesBayesoptimalBayesoptimal:ifp(x)>0.5thenpredict1,else0NoteGibbshasatmost

5、twicetheexpectederrorofBayesoptimal9Distance-WeightedkNNNearerneighborsaremoreheavilyweighted.Discrete-valuedReal-valuedwhereItmakessensetousealltrainingexamplesinsteadofjustk.[Shepard,1968]10CurseofDimensionalityImagineinstancesdescribedby20attributesbutonly2arerelevanttotargetfunction.Curseofd

6、imensionality:nearestnbriseasilymisleadwhenhigh-dimensionalXApproach:Stretchsomeaxesbyweight,andthencross-validation[MooreandLee,1944]11LocallyWeightedRegressionNotekNNformslocalapproximationtofforeachquerypointxq.Whynotformanexplicitapproximationforregionsurroundingxq?Fitlinearfunctiontokneares

7、tneighborsFitquadratic…Producespiecewiseapproximationtof12SeveralchoicesoferrortominimizeSquarederroroverknearestnbrsDistance-weightedsquarederroroverallnbrs…13RadialBasisFunctionNetworksGlobalapproximationtotargetfunctionin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。